Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 642: 123109, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37295569

RESUMO

Achieving an even coating distribution on tablets during the coating process can be challenging, not to mention the challenges of accurately measuring and quantifying inter-tablet coating variability. Computer simulations using the Discrete Element Method (DEM) provide a viable pathway towards model-predictive design of coating processes. The purpose of this study was to assess their predictivity accounting for both experimental and simulation input uncertainties. To this end, a comprehensive set of coating experiments covering various process scales, process conditions and tablet shapes were conducted. A water-soluble formulation was developed to enable rapid spectroscopic UV/VIS analysis of coating amounts on a large number of tablets. DEM predictions are found to lie within the experimentally inferred confidence intervals in all cases. A mean absolute comparison error of 0.54 % was found between model predictions of coating variability and respective sample point estimates. Among all simulation inputs the parameterization of spray area sizes is considered the most significant source for prediction errors. However, this error was found significantly smaller in magnitude compared to experimental uncertainties at larger process scales underlining the value of DEM in the design of industrial coating processes.


Assuntos
Comprimidos , Comprimidos/química , Simulação por Computador , Composição de Medicamentos/métodos
2.
Pharmaceutics ; 14(2)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35213961

RESUMO

There is a growing interest in implantable drug delivery systems (DDS) in pharmaceutical science. The aim of the present study is to investigate whether it is possible to customize drug release from implantable DDSs through drug-carrier interactions. Therefore, a series of chemically similar active ingredients (APIs) was mixed with different matrix-forming materials and was then compressed directly. Compression and dissolution interactions were examined by FT-IR spectroscopy. Regarding the effect of the interactions on drug release kinetics, a custom-made dissolution device designed for implantable systems was used. The data obtained were used to construct models based on artificial neural networks (ANNs) to predict drug dissolution. FT-IR studies confirmed the presence of H-bond-based solid-state interactions that intensified during dissolution. These results confirmed our hypothesis that interactions could significantly affect both the release rate and the amount of the released drug. The efficiencies of the kinetic parameter-based and point-to-point ANN models were also compared, where the results showed that the point-to-point models better handled predictive inaccuracies and provided better overall predictive efficiency.

3.
Int J Pharm ; 548(1): 263-275, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-29969713

RESUMO

The purpose of this study was to develop self-microemulsifying (SME-) tablets to improve resveratrol solubility whilst delivering resveratrol in a preferred tablet dosage form. Resveratrol was dissolved in liquid self-microemulsifying drug delivery system (SMEDDS) (10% w/w) and solidified through adsorption on several different solid carriers. Two ranges of synthetic amorphous silica (Sylysia® 290, 350, 470, 580; Syloid® 244FP, AL-1FP) as well as granulated magnesium aluminometasilicate (Neusilin® US2) were screened for their SMEDDS adsorbent capacity. The most efficient carrier from every range was chosen for further SME-tablet development. To counteract the high ratio of liquid in SME-tablets, additional dry binders (microcrystalline cellulose, copovidone) were added to the tableting mixture, as well as superdisintegrant (croscarmellose sodium) and lubricant (magnesium stearate). Finally, approx. 600 mg tablets were directly pressed using 12 mm flat face punch, containing 41.75% SMEDDS. Overall, all tablets exhibited sufficient hardness (>50 N), although it was negatively affected by higher compression force. Tablets with Neusilin® US2 proved to have highest hardness, as granulated structure of Neusilin® US2 provided best compaction properties needed for successful direct compression of tablets. All prepared SME tablet formulations disintegrated in under 10 min and formed microemulsions (droplet size < 100 nm) upon dilution with water, with Neusilin® US2 tablets exhibiting the lowest droplet size (<30 nm). While conventional dissolution test indicated incomplete resveratrol release from solid carriers in both pH 1.2 and 6.8 media, no difference fatty acid amount titrated during fasted state in vitro lipolysis between liquid and solid SMEDDS was observed. Moreover, accelerated stability tests confirmed over 90% of trans-resveratrol remained in solid SMEDDS following 90 days at 40 °C, with no crystallization of resveratrol observed during that time. To sum up, through adsorption on solid carriers, in particular Neusilin® US2, SMEDDS was successfully transformed into a directly compressible mixture and tableted without the loss of its self-microemulsifying ability.


Assuntos
Compostos de Alumínio/química , Antioxidantes/química , Sistemas de Liberação de Medicamentos , Excipientes/química , Compostos de Magnésio/química , Silicatos/química , Estilbenos/química , Composição de Medicamentos , Liberação Controlada de Fármacos , Emulsões , Ácidos Graxos não Esterificados/química , Lipase/química , Lipólise , Resveratrol , Dióxido de Silício/química , Comprimidos
4.
Eur J Pharm Sci ; 121: 218-227, 2018 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-29857044

RESUMO

The paper considers a novel, modified equation for evaluation of relationship between tablet tensile strength, bonding area and bonding strength with inclusion of fragmentation as particle deformation mechanism. Four types of lactose particles for direct compression were assessed for their micromeritic and mechanical properties (compressibility and compactibility), with particular focus on fragmentation behaviour, bonding area and bonding strength. Compressibility properties were assessed using three established models. Walker and Kuentz-Leuenberger models distinguished lactose plastic properties more effectively in contrast to the Heckel model. Spherical agglomerates of lactose were most prone to fragmentation as determined with the fragmentation propensity coefficient and the number of interparticulate bonds. Fragmentation, together with plastic deformation were found to be the governing factors for tablet tensile strength in α-lactose samples, while high bonding force primarily controlled the tablet tensile strength of anhydrous lactose. Tensile strength of all lactose tablets showed best correlation to the ratio of fragmentation propensity and Walker compressibility coefficient, which is proposed as better deformation index, intended to describe the overall deformation properties of lactose more precisely. A novel expression for determining bonding area is proposed, established on the enhanced deformation index, which includes both plastic deformation and fragmentation as bond formation mechanisms.


Assuntos
Excipientes/química , Lactose/química , Modelos Teóricos , Tamanho da Partícula , Pós , Estresse Mecânico , Propriedades de Superfície , Comprimidos , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA