Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Pharmacol ; 172(2): 311-6, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24517854

RESUMO

UNLABELLED: The efficiency of µ-opioid receptor signalling is tightly regulated and ultimately limited by the coordinated phosphorylation of intracellular serine and threonine residues. Here, we review and discuss recent progress in the generation and application of phosphosite-specific µ-opioid receptor antibodies, which have proved to be excellent tools for monitoring the spatial and temporal dynamics of receptor phosphorylation and dephosphorylation. Agonist-induced phosphorylation of µ-opioid receptors occurs at a conserved 10 residue sequence (370) TREHPSTANT(379) in the receptor's carboxyl-terminal cytoplasmic tail. Diverse opioids induce receptor phosphorylation at S375, present in the middle of this sequence, but only high-efficacy opioids have the ability to drive higher order phosphorylation on flanking residues (T370, T376 and T379). S375 is the initiating residue in a hierarchical phosphorylation cascade. In contrast, agonist-independent heterologous µ-opioid receptor phosphorylation occurs primarily at T370. The combination of phosphosite-specific antibodies and siRNA knockdown screening also facilitated the identification of relevant kinases and phosphatases. In fact, morphine induces a selective S375 phosphorylation that is predominantly catalysed by GPCR kinase 5 (GRK5), whereas multisite phosphorylation induced by high-efficacy opioids specifically requires GRK2/3. By contrast, T370 phosphorylation stimulated by phorbol esters or heterologous activation of Gq -coupled receptors is mediated by PKCα. Rapid µ-opioid receptor dephosphorylation occurs at or near the plasma membrane and is catalysed by protein phosphatase 1γ (PP1γ). These findings suggest that there are distinct phosphorylation motifs for homologous and heterologous regulation of µ-opioid receptor phosphorylation. However, it remains to be seen to what extent different µ-opioid receptor phosphorylation patterns contribute to the development of tolerance and dependence in vivo. LINKED ARTICLES: This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2.


Assuntos
Receptores Opioides mu/metabolismo , Animais , Humanos , Fosforilação , Receptores Opioides mu/agonistas
2.
Br J Pharmacol ; 171(5): 1330-40, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24308893

RESUMO

BACKGROUND AND PURPOSE: Homologous agonist-induced phosphorylation of the µ-opioid receptor (MOR) is initiated at the carboxyl-terminal S375, followed by phosphorylation of T370, T376 and T379. In HEK293 cells, this sequential and hierarchical multi-site phosphorylation is specifically mediated by G-protein coupled receptor kinases 2 and 3. In the present study, we provide evidence for a selective and dose-dependent phosphorylation of T370 after activation of PKC by phorbol esters. EXPERIMENTAL APPROACH: We used a combination of phospho site-specific antibodies, kinase inhibitors and siRNA knockdown screening to identify kinases that mediate agonist-independent phosphorylation of the MOR in HEK293 cells. In addition, we show with phospho site-specific antibodies were also used to study constitutive phosphorylation at S363 of MORs in mouse brain in vivo. KEY RESULTS: Activation of PKC by phorbol esters or heterologous activation of substance P receptors co-expressed with MORs in the same cell induced a selective and dose-dependent phosphorylation of T370 that specifically requires the PKCα isoform. Inhibition of PKC activity did not compromise homologous agonist-driven T370 phosphorylation. In addition, S363 was constitutively phosphorylated in both HEK293 cells and mouse brain in vivo. Constitutive S363 phosphorylation required ongoing PKC activity. When basal PKC activity was decreased, S363 was also a substrate for homologous agonist-stimulated phosphorylation. CONCLUSIONS AND IMPLICATIONS: Our results have disclosed novel mechanisms of heterologous regulation of MOR phosphorylation by PKC. These findings represent a useful starting point for definitive experiments elucidating the exact contribution of PKC-driven MOR phosphorylation to diminished MOR responsiveness in morphine tolerance and pathological pain.


Assuntos
Proteína Quinase C/metabolismo , Receptores Opioides mu/metabolismo , Analgésicos Opioides/farmacologia , Animais , Encéfalo/metabolismo , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Proteína Quinase C/antagonistas & inibidores , Receptores Opioides mu/agonistas , Acetato de Tetradecanoilforbol/farmacologia
3.
Mol Pharmacol ; 83(3): 633-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23239825

RESUMO

Differences in the ability of opioid drugs to promote regulated endocytosis of µ-opioid receptors are related to their tendency to produce drug tolerance and dependence. Here we show that drug-specific differences in receptor internalization are determined by a conserved, 10-residue sequence in the receptor's carboxyl-terminal cytoplasmic tail. Diverse opioids induce receptor phosphorylation at serine (S)375, present in the middle of this sequence, but opioids differ markedly in their ability to drive higher-order phosphorylation on flanking residues [threonine (T)370, T376, and T379]. Multi-phosphorylation is required for the endocytosis-promoting activity of this sequence and occurs both sequentially and hierarchically, with S375 representing the initiating site. Higher-order phosphorylation involving T370, T376, and T379 specifically requires GRK2/3 isoforms, and the same sequence controls opioid receptor internalization in neurons. These results reveal a biochemical mechanism differentiating the endocytic activity of opioid drugs.


Assuntos
Analgésicos Opioides/farmacologia , Receptores Opioides/metabolismo , Animais , Endocitose/efeitos dos fármacos , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Quinase 3 de Receptor Acoplado a Proteína G/metabolismo , Células HEK293 , Humanos , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosforilação , Isoformas de Proteínas/metabolismo , Serina/metabolismo , Treonina/metabolismo
4.
Mol Endocrinol ; 24(2): 436-46, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20051480

RESUMO

Pasireotide (SOM230) is currently under clinical evaluation as a successor compound to octreotide for the treatment of acromegaly, Cushing's disease, and carcinoid tumors. Whereas octreotide acts primarily via the sst(2A) somatostatin receptor, pasireotide was designed to exhibit octreotide-like sst(2A) activity combined with enhanced binding to other somatostatin receptor subtypes. In the present study, we used phophosite-specific antibodies to examine agonist-induced phosphorylation of the rat sst(2A) receptor. We show that somatostatin and octreotide stimulate the complete phosphorylation of a cluster of four threonine residues within the cytoplasmic (353)TTETQRT(359) motif in a variety of cultured cell lines in vitro as well as in intact animals in vivo. This phosphorylation was mediated by G protein-coupled receptor kinases (GRK) 2 and 3 and followed by rapid cointernalization of the receptor and ss-arrestin into the same endocytic vesicles. In contrast, pasireotide failed to promote substantial phosphorylation and internalization of the rat sst(2A) receptor. In the presence of octreotide or SS-14, SOM230 showed partial agonist behavior, inhibiting phosphorylation, and internalization of sst(2A). Upon overexpression of GRK2 or GRK3, pasireotide stimulated selective phosphorylation of Thr356 and Thr359 but not of Thr353 or Thr354 within the (353)TTETQRT(359) motif. Pasireotide-mediated phosphorylation led to the formation of relatively unstable beta-arrestin-sst(2A) complexes that dissociated at or near the plasma membrane. Thus, octreotide and pasireotide are equally active in inducing classical G protein-dependent signaling via the sst(2A) somatostatin receptor. Yet, we find that they promote strikingly different patterns of sst(2A) receptor phosphorylation and, hence, stimulate functionally distinct pools of beta-arrestin.


Assuntos
Octreotida/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Receptores de Somatostatina/metabolismo , Somatostatina/análogos & derivados , Somatostatina/agonistas , Animais , Anticorpos Fosfo-Específicos/isolamento & purificação , Arrestinas/genética , Arrestinas/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Endocitose/efeitos dos fármacos , Humanos , Ligantes , Masculino , Pâncreas/efeitos dos fármacos , Pâncreas/patologia , Fosforilação/efeitos dos fármacos , Hipófise/efeitos dos fármacos , Hipófise/patologia , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional/genética , Ratos , Ratos Wistar , Receptores de Somatostatina/agonistas , Receptores de Somatostatina/antagonistas & inibidores , Receptores de Somatostatina/genética , Somatostatina/antagonistas & inibidores , Somatostatina/farmacologia , Treonina/genética , Treonina/metabolismo , Quinases de Receptores Adrenérgicos beta/antagonistas & inibidores , Quinases de Receptores Adrenérgicos beta/genética , Quinases de Receptores Adrenérgicos beta/metabolismo , beta-Arrestinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...