Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(11)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37298595

RESUMO

Colorectal cancer (CRC) is one of the most lethal malignancies worldwide, so the attempts to find novel therapeutic approaches are necessary. The aim of our study was to analyze how chemical modifications influence physical, chemical, and biological properties of the two peptides, namely, bradykinin (BK) and neurotensin (NT). For this purpose, we used fourteen modified peptides, and their anti-cancers features were analyzed on the HCT116 CRC cell line. Our results confirmed that the spherical mode of a CRC cell line culture better reflects the natural tumour microenvironment. We observed that the size of the colonospheres was markedly reduced following treatment with some BK and NT analogues. The proportion of CD133+ cancer stem cells (CSCs) in colonospheres decreased following incubation with the aforementioned peptides. In our research, we found two groups of these peptides. The first group influenced all the analyzed cellular features, while the second seemed to include the most promising peptides that lowered the count of CD133+ CSCs with parallel substantial reduction in CRC cells viability. These analogues need further analysis to uncover their overall anti-cancer potential.


Assuntos
Bradicinina , Neoplasias do Colo , Neurotensina , Bradicinina/análogos & derivados , Neurotensina/análogos & derivados , Neoplasias do Colo/tratamento farmacológico , Células HCT116 , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Antígeno AC133 , Peptídeos/síntese química , Peptídeos/farmacologia , Sobrevivência Celular
2.
Sci Rep ; 12(1): 19015, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36348016

RESUMO

Eleven multiple analogs of bradykinin-a peptide that is a natural ligand of B1 and B2 receptors but does not bind or activate the B1 receptor unless Arg9 is removed from the sequence by the action of carboxypeptidase N-were synthesized. Their biological activity was examined on T-REx cell lines expressing B1 or B2 receptors using the intracellular IP1 assay. The mRNA expression of B1R and B2R in the lysate of tumor cell lines, e.g., U87-MG (human astrocytoma), SHP-77 (human small cell lung cancer), and H4 (human brain glioma), was determined. For five B1R antagonists, adsorption at the liquid/solid interface (Au nanoparticles (AuNPs) served as the solid surface) was discussed in terms of the vibrations of molecular fragments (structural factors) responsible for the biological properties of these analogs.


Assuntos
Bradicinina , Nanopartículas Metálicas , Humanos , Receptor B1 da Bradicinina/genética , Receptor B2 da Bradicinina/genética , Ouro , Fatores de Transcrição
3.
Antibiotics (Basel) ; 11(11)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36358146

RESUMO

This study investigates short cationic antimicrobial lipopeptides composed of 2-4 amino acid residues and C12-C18 fatty acids attached to the N-terminal part of the peptides. The findings were discussed in the context of the relationship among biological activity, self-assembly, stability, and membrane interactions. All the lipopeptides showed the ability to self-assemble in PBS solution. In most cases, the critical aggregation concentration (CAC) much surpassed the minimal inhibitory concentration (MIC) values, suggesting that monomers are the main active form of lipopeptides. The introduction of ß-alanine into the peptide sequence resulted in a compound with a high propensity to fibrillate, which increased the peptide stability and activity against S. epidermidis and C. albicans and reduced the cytotoxicity against human keratinocytes. The results of our study indicated that the target of action of lipopeptides is the bacterial membrane. Interestingly, the type of peptide counterion may affect the degree of penetration of the lipid bilayer. In addition, the binding of the lipopeptide to the membrane of Gram-negative bacteria may lead to the release of calcium ions necessary for stabilization of the lipopolysaccharide layer.

4.
Biomolecules ; 12(8)2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-36009034

RESUMO

The UNited RESidue (UNRES) model of polypeptide chains was applied to study the association of 20 peptides with sizes ranging from 6 to 32 amino-acid residues. Twelve of those were potentially aggregating hexa- or heptapeptides excised from larger proteins, while the remaining eight contained potentially aggregating sequences, functionalized by attaching larger ends rich in charged residues. For 13 peptides, the experimental data of aggregation were used. The remaining seven were synthesized, and their properties were measured in this work. Multiplexed replica-exchange simulations of eight-chain systems were conducted at 12 temperatures from 260 to 370 K at concentrations from 0.421 to 5.78 mM, corresponding to the experimental conditions. The temperature profiles of the fractions of monomers and octamers showed a clear transition corresponding to aggregate dissociation. Low simulated transition temperatures were obtained for the peptides, which did not precipitate after incubation, as well as for the H-GNNQQNY-NH2 prion-protein fragment, which forms small fibrils. A substantial amount of inter-strand ß-sheets was found in most of the systems. The results suggest that UNRES simulations can be used to assess peptide aggregation except for glutamine- and asparagine-rich peptides, for which a revision of the UNRES sidechain-sidechain interaction potentials appears necessary.


Assuntos
Peptídeos , Proteínas , Simulação de Dinâmica Molecular , Peptídeos/química , Conformação Proteica , Proteínas/química , Temperatura
5.
Int J Mol Sci ; 23(10)2022 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-35628610

RESUMO

Amyloid fibrils have been known for many years. Unfortunately, their fame stems from negative aspects related to amyloid diseases. Nevertheless, due to their properties, they can be used as interesting nanomaterials. Apart from their remarkable stability, amyloid fibrils may be regarded as a kind of a storage medium and as a source of active peptides. In many cases, their structure may guarantee a controlled and slow release of peptides in their active form; therefore, they can be used as a potential nanomaterial in drug delivery systems. In addition, amyloid fibrils display controllable stiffness, flexibility, and satisfactory mechanical strength. In addition, they can be modified and functionalized very easily. Understanding the structure and genesis of amyloid assemblies derived from a broad range of amyloidogenic proteins could help to better understand and use this unique material. One of the factors responsible for amyloid aggregation is the steric zipper. Here, we report the discovery of steric zipper-forming peptides in the sequence of the amyloidogenic protein, human cystatin C (HCC). The ability of short peptides derived from this fragment of HCC to form fibrillar structures with defined self-association characteristics and the factors influencing this aggregation are also presented in this paper.


Assuntos
Amiloide , Amiloidose , Amiloide/química , Proteínas Amiloidogênicas/química , Cistatina C/química , Humanos , Peptídeos/química
6.
Int J Mol Sci ; 22(8)2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33917000

RESUMO

Technological developments in the field of biologically active peptide applications in medicine have increased the need for new methods for peptide delivery. The disadvantage of peptides as drugs is their low biological stability. Recently, great attention has been paid to self-assembling peptides that can form fibrils. Such a formulation makes bioactive peptides more resistant to enzymatic degradation and druggable. Peptide fibrils can be carriers for peptides with interesting biological activities. These features open up prospects for using the peptide fibrils as long-acting drugs and are a valid alternative to conventional peptidic therapies. In our study, we designed new peptide scaffolds that are a hybrid of three interconnected amino acid sequences and are: pro-regenerative, cleavable by neutrophilic elastase, and fibril-forming. We intended to obtain peptides that are stable in the wound environment and that, when applied, would release a biologically active sequence. Our studies showed that the designed hybrid peptides show a high tendency toward regular fibril formation and are able to release the pro-regenerative sequence. Cytotoxicity studies showed that all the designed peptides were safe, did not cause cytotoxic effects and revealed a pro-regenerative potential in human fibroblast and keratinocyte cell lines. In vivo experiments in a dorsal skin injury model in mice indicated that two tested peptides moderately promote tissue repair in their free form. Our research proves that peptide fibrils can be a druggable form and a scaffold for active peptides.


Assuntos
Portadores de Fármacos/química , Peptídeos/química , Peptídeos/farmacologia , Alicerces Teciduais/química , Cicatrização/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Fenômenos Químicos , Fibroblastos , Humanos , Queratinócitos , Camundongos , Microscopia de Força Atômica , Microscopia Eletrônica , Proteólise , Medicina Regenerativa , Análise Espectral
7.
J Pept Sci ; 24(4-5): e3073, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29573035

RESUMO

Human cystatin C (hCC) is a low molecular mass protein that belongs to the cystatin superfamily. It is an inhibitor of extracellular cysteine proteinases, present in all human body fluids. At physiological conditions, hCC is a monomer, but it has a tendency to dimerization. Naturally occurring hCC mutant, with leucine in position 68 substituted by glutamine (L68Q), is directly involved in the formation of amyloid deposits, independently of other proteins. This process is the primary cause of hereditary cerebral amyloid angiopathy, observed mainly in the Icelandic population. Oligomerization and fibrillization processes of hCC are not explained equally well, but it is proposed that domain swapping is involved in both of them. Research carried out on the fibrillization process led to new hypothesis about the existence of a steric zipper motif in amyloidogenic proteins. In the hCC sequence, there are 2 fragments which may play the role of a steric zipper: the loop L1 region and the C-terminal fragment. In this work, we focused on the first of these. Nine hexapeptides covering studied hCC fragment were synthesized, and their fibrillogenic potential was assessed using an array of biophysical methods. The obtained results showed that the studied hCC fragment has strong profibrillogenic propensities because it contains 2 fragments fulfilling the requirements for an effective steric zipper located next to each other, forming 1 super-steric zipper motif. This hCC fragment might therefore be responsible for the enhanced amyloidogenic properties of dimeric or partially unfolded hCC.


Assuntos
Amiloide/síntese química , Cistatina C/química , Oligopeptídeos/síntese química , Amiloide/química , Cistatina C/genética , Dimerização , Humanos , Modelos Moleculares , Mutação , Oligopeptídeos/química , Conformação Proteica , Domínios Proteicos
8.
Biochim Biophys Acta ; 1838(10): 2625-34, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24978107

RESUMO

In this work, the self-organization and the behavior of the surfactant-like peptides in the presence of biological membrane models were studied. The studies were focused on synthetic palmitic acid-containing lipopeptides, C16-KK-NH2 (I), C16-KGK-NH2 (II) and C16-KKKK-NH2 (III). The self-assembly was explored by molecular dynamics simulations using a coarse-grained force field. The critical micellar concentration was estimated by the surface tension measurements. The thermodynamics of the peptides binding to the anionic and zwitterionic lipids were established using isothermal titration calorimetry (ITC). The influence of the peptides on the lipid acyl chain ordering was determined using FTIR spectroscopy. The compounds studied show surface-active properties with a distinct CMC over the millimolar range. An increase in the steric and electrostatic repulsion between polar head groups shifts the CMC toward higher values and reduces the aggregation number. An analysis of the peptide-membrane binding revealed a unique interplay between the initial electrostatic and the subsequent hydrophobic interactions enabling the lipopeptides to interact with the lipid bilayer. In the case of C16-KKKK-NH2 (III), compensation of the electrostatic and hydrophobic interactions upon binding to the anionic membrane has been suggested and consequently no overall binding effects were noticed in ITC thermograms and FTIR spectra.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Lipopeptídeos/química , Lipídeos de Membrana/química , Ácido Palmítico/química , Calorimetria , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática
9.
Biochim Biophys Acta ; 1818(12): 2982-93, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22824299

RESUMO

In this work, the behavior of the neurohypophyseal hormones and their selected analogs was studied in the presence of membrane models in an attempt to correlate their activities with a distinct behavior at a level of peptide-lipid interactions. The influence of the peptides studied on the lipid acyl chain order was determined using FTIR spectroscopy. Conformational changes in the peptides upon binding to liposomes were examined using CD spectra. Attempts were also made to determine the binding parameters of the peptides to lipids using isothermal titration calorimetry (ITC). The results show unambiguously that the neurohyphophyseal hormone-like peptides interact with lipids, being a model of a eukaryotic cell membrane. Moreover, hydrophobic interactions between the peptides and liposomes are likely to determine the overall conformation of the peptide, especially below the temperature of the main phase transition (T(m)). Thus, the bulky and hydrophobic nature of the residues incorporated into the N-terminal part of neurohyphophyseal hormones is an important factor for both restriction of peptide mobility and the interaction of the analog with biomembrane. In turn, above T(m), the electrostatic interactions become also relevant for the conformation of the acyclic tail of the AVP-like peptides.


Assuntos
Membrana Celular/química , Membrana Celular/metabolismo , Bicamadas Lipídicas/metabolismo , Hormônios Peptídicos/metabolismo , Hormônios Neuro-Hipofisários/metabolismo , Varredura Diferencial de Calorimetria , Membrana Celular/ultraestrutura , Estruturas da Membrana Celular , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/química , Lipossomos/química , Lipossomos/metabolismo , Hormônios Peptídicos/química , Hormônios Neuro-Hipofisários/química , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA