Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 63(8): 1026-1037, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38564530

RESUMO

The mitochondrial enzyme cytochrome P450 11B2 (aldosterone synthase) catalyzes the 3 terminal transformations in the biosynthesis of aldosterone from 11-deoxycorticosterone (DOC): 11ß-hydroxylation to corticosterone, 18-hydroxylation, and 18-oxidation. Prior studies have shown that P450 11B2 produces more aldosterone from DOC than from the intermediate corticosterone and that the reaction sequence is processive, with intermediates remaining bound to the active site between oxygenation reactions. In contrast, P450 11B1 (11ß-hydroxylase), which catalyzes the terminal step in cortisol biosynthesis, shares a 93% amino acid sequence identity with P450 11B2, converts DOC to corticosterone, but cannot synthesize aldosterone from DOC. The biochemical and biophysical properties of P450 11B2, which enable its unique 18-oxygenation activity and processivity, yet are not also represented in P450 11B1, remain unknown. To understand the mechanism of aldosterone biosynthesis, we introduced point mutations at residue 320, which partially exchange the activities of P450 11B1 and P450 11B2 (V320A and A320V, respectively). We then investigated NADPH coupling efficiencies, binding kinetics and affinities, and product formation of purified P450 11B1 and P450 11B2, wild-type, and residue 320 mutations in phospholipid vesicles and nanodiscs. Coupling efficiencies for the 18-hydroxylase reaction with corticosterone as the substrate failed to correlate with aldosterone synthesis, ruling out uncoupling as a relevant mechanism. Conversely, corticosterone dissociation rates correlated inversely with aldosterone production. We conclude that intermediate dissociation kinetics, not coupling efficiency, enable P450 11B2 to synthesize aldosterone via a processive mechanism. Our kinetic data also suggest that the binding of DOC to P450 11B enzymes occurs in at least two distinct steps, favoring an induced-fit mechanism.


Assuntos
Aldosterona , Esteroide 11-beta-Hidroxilase , Esteroide 11-beta-Hidroxilase/química , Esteroide 11-beta-Hidroxilase/genética , Esteroide 11-beta-Hidroxilase/metabolismo , Corticosterona/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Citocromo P-450 CYP11B2/genética , Citocromo P-450 CYP11B2/química , Citocromo P-450 CYP11B2/metabolismo , Catálise , Cinética
2.
J Colloid Interface Sci ; 653(Pt B): 1402-1414, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37801850

RESUMO

Lipid-bilayer nanodiscs provide a stable, native-like membrane environment for the functional and structural studies of membrane proteins and other membrane-binding molecules. Peptide-based nanodiscs having unique properties are developed for membrane protein studies and other biological applications. While the self-assembly process rendering the formation of peptide-nanodiscs is attractive, it is important to understand the stability and suitability of these nanodisc systems for membrane protein studies. In this study, we investigated the nanodiscs formation by the anti-inflammatory and tumor-suppressing peptide AEM28. AEM28 is a chimeric peptide containing a cationic-rich heparan sulfate proteoglycan- (HSPG)-binding domain from human apolipoprotein E (hapoE) (141-150) followed by the 18A peptide's amino acid sequence. AEM28-based nanodiscs made with different types of lipids were characterized using various biophysical techniques and compared with the nanodiscs formed using 2F or 4F peptides. Variable temperature dynamic light-scattering and 31P NMR experiments indicated the fusion and size heterogeneity of nanodiscs at high temperatures. The suitability of AEM28 and Ac-18A-NH2- (2F-) based nanodiscs for studying membrane proteins is demonstrated by reconstituting and characterizing a drug-metabolizing enzyme, cytochrome-P450 (CYP450), or the redox complex CYP450-CYP450 reductase. AEM28 and 2F were also tested for their efficacies in solubilizing E. coli membranes to understand the possibility of using them for detergent-free membrane protein isolation. Our experimental results suggest that AEM28 nanodiscs are suitable for studying membrane proteins with a net positive charge, whereas 2F-based nanodiscs are compatible with any membrane proteins and their complexes irrespective of their charge. Furthermore, both peptides solubilized E. coli cell membranes, indicating their use in membrane protein isolation and other applications related to membrane solubilization.


Assuntos
Proteínas de Membrana , Nanoestruturas , Humanos , Proteínas de Membrana/química , Nanoestruturas/química , Escherichia coli/metabolismo , Peptídeos/química , Bicamadas Lipídicas/química
3.
Methods Enzymol ; 689: 263-276, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37802573

RESUMO

The two human steroid 5α-reductase (5αR) enzymes catalyze the conversion 3-keto-Δ4-steroids to their 5α-reduced congeners. In the genital skin and prostate, the type 2 isoenzyme converts testosterone (T) to the more potent androgen 5α-dihydrotestosterone (DHT), and intracellular DHT is essential for the morphogenesis of the undifferentiated external genitalia to the male phenotype. Both isoenzymes also metabolize other 19- and 21-carbon 3-keto-Δ4-steroids, both endogenous compounds and some steroid-based drugs. Rigorous biochemical studies have been limited due to the extremely hydrophobic nature of these proteins. We have described the heterologous expression of these enzymes in bacteria, their purification with affinity chromatography, and the reconstitution of activity in liposomes. This article details these procedures, as well as reconstitution in phospholipid nanodiscs and enzyme assay.


Assuntos
3-Oxo-5-alfa-Esteroide 4-Desidrogenase , Lipossomos , Humanos , Masculino , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/genética , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/metabolismo , Fosfolipídeos , Testosterona/metabolismo , Di-Hidrotestosterona/metabolismo
4.
J Inorg Biochem ; 247: 112340, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37544101

RESUMO

Cholesterol, a significant constituent of the endoplasmic reticulum membrane, exerts a substantial effect on the membrane's biophysical and mechanical properties. Cholesterol, however, is often neglected in model systems used to study membrane-bound proteins. For example, the influence of cholesterol on the enzymatic functions of type 2 cytochromes P450, which require a phospholipid bilayer and the redox partner P450-oxidoreductase (POR) for activity, are rarely investigated. Human aromatase (P450 19A1) catalyzes three sequential oxygenations of 19­carbon steroids to estrogens and is widely expressed across various tissues, which are characterized by varying cholesterol compositions. Our study examined the impact of cholesterol on the functionality of the P450 19A1 complex with POR. Nanodiscs containing P450 19A1 with 20% cholesterol/80% phospholipid had similar rates and affinity of androstenedione binding as phospholipid-only P450 19A1 nanodiscs, and rates of product formation were indistinguishable among these conditions. In contrast, the rate of the first electron transfer from POR to P450 19A1 was 3-fold faster in cholesterol-containing nanodiscs than in phospholipid-only nanodiscs. These results suggest that cholesterol influences some aspects of POR interaction with P450 19A1 and might serve as an additional regulatory mechanism in this catalytic system.


Assuntos
Aromatase , Fosfolipídeos , Humanos , Aromatase/metabolismo , Oxirredução , Esteroides , Colesterol
5.
Anal Chem ; 94(34): 11908-11915, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35977417

RESUMO

Although polymer-based lipid nanodiscs are increasingly used in the structural studies of membrane proteins, the charge of the belt-forming polymer is a major limitation for functional reconstitution of membrane proteins possessing an opposite net charge to that of the polymer. This limitation also rules out the reconstitution of a protein-protein complex composed of oppositely charged membrane proteins. In this study, we report the first successful functional reconstitution of a membrane-bound redox complex constituting a cationic cytochrome P450 (CYP450) and an anionic cytochrome P450 reductase (CPR) in non-ionic inulin-based lipid nanodiscs. The gel-to-liquid-crystalline phase-transition temperature (Tm) of DMPC:DMPG (7:3 w/w) lipids in polymer nanodiscs was determined by differential scanning calorimetry (DSC) and 31P NMR experiments. The CYP450-CPR redox complex reconstitution in polymer nanodiscs was characterized by size-exclusion chromatography (SEC), and the electron transfer kinetics was carried out using the stopped-flow technique under anaerobic conditions. The Tm of DMPC:DMPG (7:3 w/w) in polymer nanodiscs measured from 31P NMR agrees with that obtained from DSC and was found to be higher than that for liposomes due to the decreased cooperativity of lipids present in the nanodiscs. The stopped-flow measurements revealed the CYP450-CPR redox complex reconstituted in nanodiscs to be functional, and the electron transfer kinetics was found to be temperature-dependent. Based on the successful demonstration of the use of non-ionic inulin-based polymer nanodiscs reported in this study, we expect them to be useful in studying the function and structures of a variety of membrane proteins/complexes irrespective of the charge of the molecular components. Since the polymer nanodiscs were shown to align in an externally applied magnetic field, they can also be used to measure residual dipolar couplings (RDCs) and residual quadrupolar couplings (RQCs) for various molecules ranging from small molecules to soluble proteins and nucleic acids.


Assuntos
Bicamadas Lipídicas , Nanoestruturas , Sistema Enzimático do Citocromo P-450/metabolismo , Dimiristoilfosfatidilcolina , Transporte de Elétrons , Inulina/metabolismo , Bicamadas Lipídicas/química , Proteínas de Membrana/química , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Nanoestruturas/química
6.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638963

RESUMO

Cytochrome P450 reductase (CYPOR) provides electrons to all human microsomal cytochrome P450s (cyt P450s). The length and sequence of the "140s" FMN binding loop of CYPOR has been shown to be a key determinant of its redox potential and activity with cyt P450s. Shortening the "140s loop" by deleting glycine-141(ΔGly141) and by engineering a second mutant that mimics flavo-cytochrome P450 BM3 (ΔGly141/Glu142Asn) resulted in mutants that formed an unstable anionic semiquinone. In an attempt to understand the molecular basis of the inability of these mutants to support activity with cyt P450, we expressed, purified, and determined their ability to reduce ferric P450. Our results showed that the ΔGly141 mutant with a very mobile loop only reduced ~7% of cyt P450 with a rate similar to that of the wild type. On the other hand, the more stable loop in the ΔGly141/Glu142Asn mutant allowed for ~55% of the cyt P450 to be reduced ~60% faster than the wild type. Our results reveal that the poor activity of the ΔGly141 mutant is primarily accounted for by its markedly diminished ability to reduce ferric cyt P450. In contrast, the poor activity of the ΔGly141/Glu142Asn mutant is presumably a consequence of the altered structure and mobility of the "140s loop".


Assuntos
Hidrocarboneto de Aril Hidroxilases/metabolismo , Transporte de Elétrons/genética , Elétrons , Mononucleotídeo de Flavina/metabolismo , NADPH-Ferri-Hemoproteína Redutase/química , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Sequência de Aminoácidos , Animais , Família 2 do Citocromo P450/metabolismo , Citocromo-B(5) Redutase/metabolismo , Citocromos b5/metabolismo , Glicina/genética , Cinética , Microssomos/metabolismo , Mutagênese Sítio-Dirigida/métodos , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , NADPH-Ferri-Hemoproteína Redutase/genética , Oxirredução , Ligação Proteica , Conformação Proteica , Coelhos
7.
Endocrinology ; 161(8)2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32716491

RESUMO

The potent androgen 5α-dihydrotestosterone irreversibly derives from testosterone via the activity of steroid 5α-reductases (5αRs). The major 5αR isoforms in most species, 5αR1 and 5αR2, have not been purified to homogeneity. We report here the heterologous expression of polyhistidine-tagged, codon-optimized human 5αR1 and 5αR2 cDNAs in Escherichia coli. A combination of the nonionic detergents Triton X-100 and Nonidet P-40 enabled solubilization of these extremely hydrophobic integral membrane proteins and facilitated purification with affinity and cation-exchange chromatography methods. For functional reconstitution, we incorporated the purified isoenzymes into Triton X-100-saturated dioleoylphosphatidylcholine liposomes and removed excess detergent with polystyrene beads. Kinetic studies indicated that the 2 isozymes differ in biochemical properties, with 5αR2 having a lower apparent Km for testosterone, androstenedione, progesterone, and 17-hydroxyprogesterone than 5αR1; however, 5αR1 had a greater capacity for steroid conversion, as reflected by a higher Vmax than 5αR2. Both enzymes preferred progesterone as substrate over other steroids, and the catalytic efficiency of purified reconstituted 5αR2 exhibited a sharp pH optimum at pH 5. Intriguingly, we found that the prostate-cancer drug-metabolite 3-keto-∆ 4-abiraterone is metabolized by 5αR1 but not 5αR2, which may serve as a structural basis for isoform selectivity and inhibitor design. The functional characterization results with the purified reconstituted isoenzymes paralleled trends obtained with HEK-293 cell lines stably expressing native 5αR1 and 5αR2. Access to purified human 5αR1 and 5αR2 will advance studies of these important enzymes and might help to clarify their contributions to steroid anabolism and catabolism.


Assuntos
3-Oxo-5-alfa-Esteroide 4-Desidrogenase , Escherichia coli/metabolismo , Engenharia de Proteínas/métodos , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/química , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/genética , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/isolamento & purificação , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/metabolismo , Inibidores de 5-alfa Redutase/farmacologia , Ativação Enzimática/genética , Escherichia coli/genética , Células HEK293 , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/isolamento & purificação , Isoenzimas/metabolismo , Cinética , Dobramento de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Transfecção , Transformação Bacteriana
8.
Biochim Biophys Acta Biomembr ; 1862(5): 183194, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31953231

RESUMO

Microsomal cytochrome b5 (cytb5) is a membrane-bound protein capable of donating the second electron to cytochrome P450s (cytP450s) in the cytP450s monooxygenase reactions. Recent studies have demonstrated the importance of the transmembrane domain of cytb5 in the interaction with cytP450 by stabilizing its monomeric structure. While recent NMR studies have provided high-resolution insights into the structural interactions between the soluble domains of ~16-kDa cytb5 and ~57-kDa cytP450 in a membrane environment, there is need for studies to probe the residues in the transmembrane region as well as to obtain intermolecular distance constraints to better understand the very large size cytb5-cytP450 complex structure in a near native membrane environment. In this study, we report the expression, purification, functional reconstitution of 19F-labeled full-length rabbit cytb5 in peptide based nanodiscs for structural studies using NMR spectroscopy. Size exclusion chromatography, dynamic light scattering, transmission electron microscopy, and NMR experiments show a stable reconstitution of cytb5 in 4F peptide-based lipid-nanodiscs. The reported results demonstrate the use of 19F NMR experiments to study 19F-labeled (with 5-fluorotryptophan (5FW)) cytb5 reconstituted in peptide-nanodiscs and the detection of residues from the transmembrane domain by solution 19F NMR experiments. 19F NMR results revealing the interaction of the transmembrane domain of cytb5 with the full-length rabbit cytochrome P450 2B4 (CYP2B4) are also presented. We expect the results presented in this study to be useful to devise approaches to probe the structure, dynamics and functional roles of transmembrane domains of a membrane protein, and also to measure intermolecular 19F-19F distance constraints to determine the structural interactions between the transmembrane domains.


Assuntos
Citocromos b5/química , Citocromos b5/isolamento & purificação , Animais , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Citocromos b5/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Proteínas de Membrana/química , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular/métodos , Oxirredução , Ligação Proteica , Domínios Proteicos , Coelhos
9.
Chem Commun (Camb) ; 54(69): 9615-9618, 2018 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-30094448

RESUMO

Although there is a growing interest in using polymer lipid-nanodiscs, the polymer charge poses limitations for studies on membrane proteins. Here, we demonstrate the functional reconstitution of a large soluble-domain containing positively-charged ∼57 kDa cytochrome-P450 and negatively-charged ∼16 kDa cytochrome-b5 in lipid-nanodiscs, and the role of the polymer charge for high-resolution studies on membrane proteins.

10.
Chem Commun (Camb) ; 54(49): 6336-6339, 2018 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-29863198

RESUMO

Lipids are critical for the function of membrane proteins. NADPH-cytochrome-P450-reductase, the sole electron transferase for microsomal oxygenases, possesses a conformational dynamics entwined with its topology. Here, we use peptide-nanodiscs to unveil cytochrome-P450-reductase's lipid boundaries, demonstrating a protein-driven enrichment of ethanolamine lipids (by 25%) which ameliorates by 3-fold CPR's electron-transfer ability.


Assuntos
Proteínas de Membrana/química , Membranas Artificiais , NADPH-Ferri-Hemoproteína Redutase/química , Nanoestruturas/química , Peptídeos/química , Animais , Bovinos , Mononucleotídeo de Flavina/química , Flavina-Adenina Dinucleotídeo/química , Fluorescência , Fosfatidiletanolaminas/química , Conformação Proteica
12.
Angew Chem Int Ed Engl ; 57(28): 8458-8462, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29722926

RESUMO

Structural interactions that enable electron transfer to cytochrome-P450 (CYP450) from its redox partner CYP450-reductase (CPR) are a vital prerequisite for its catalytic mechanism. The first structural model for the membrane-bound functional complex to reveal interactions between the full-length CYP450 and a minimal domain of CPR is now reported. The results suggest that anchorage of the proteins in a lipid bilayer is a minimal requirement for CYP450 catalytic function. Akin to cytochrome-b5 (cyt-b5 ), Arg 125 on the C-helix of CYP450s is found to be important for effective electron transfer, thus supporting the competitive behavior of redox partners for CYP450s. A general approach is presented to study protein-protein interactions combining the use of nanodiscs with NMR spectroscopy and SAXS. Linking structural details to the mechanism will help unravel the xenobiotic metabolism of diverse microsomal CYP450s in their native environment and facilitate the design of new drug entities.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Mononucleotídeo de Flavina/metabolismo , Nanoestruturas/química , Peptídeos/química , Sistema Enzimático do Citocromo P-450/química , Mononucleotídeo de Flavina/química , Modelos Moleculares , Oxirredução
14.
Angew Chem Int Ed Engl ; 57(13): 3391-3395, 2018 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-29385304

RESUMO

Although membrane environment is known to boost drug metabolism by mammalian cytochrome P450s, the factors that stabilize the structural folding and enhance protein function are unclear. In this study, we use peptide-based lipid nanodiscs to "trap" the lipid boundaries of microsomal cytochrome P450 2B4. We report the first evidence that CYP2B4 is able to induce the formation of raft domains in a biomimetic compound of the endoplasmic reticulum. NMR experiments were used to identify and quantitatively determine the lipids present in nanodiscs. A combination of biophysical experiments and molecular dynamics simulations revealed a sphingomyelin binding region in CYP2B4. The protein-induced lipid raft formation increased the thermal stability of P450 and dramatically altered ligand binding kinetics of the hydrophilic ligand BHT. These results unveil membrane/protein dynamics that contribute to the delicate mechanism of redox catalysis in lipid membrane.


Assuntos
Sistema Enzimático do Citocromo P-450/química , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/química , Esfingomielinas/química , Animais , Humanos , Cinética , Lipídeos de Membrana/química , Proteínas de Membrana/metabolismo , Simulação de Dinâmica Molecular , Nanopartículas/química , Ligação Proteica
15.
Biochemistry ; 57(6): 945-962, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29308883

RESUMO

Conformational changes in NADPH-cytochrome P450 oxidoreductase (CYPOR) associated with electron transfer from NADPH to electron acceptors via FAD and FMN have been investigated via structural studies of the four-electron-reduced NADP+-bound enzyme and kinetic and structural studies of mutants that affect the conformation of the mobile Gly631-Asn635 loop (Asp632 loop). The structure of four-electron-reduced, NADP+-bound wild type CYPOR shows the plane of the nicotinamide ring positioned perpendicular to the FAD isoalloxazine with its carboxamide group forming H-bonds with N1 of the flavin ring and the Thr535 hydroxyl group. In the reduced enzyme, the C8-C8 atoms of the two flavin rings are ∼1 Šcloser than in the fully oxidized and one-electron-reduced structures, which suggests that flavin reduction facilitates interflavin electron transfer. Structural and kinetic studies of mutants Asp632Ala, Asp632Phe, Asp632Asn, and Asp632Glu demonstrate that the carboxyl group of Asp632 is important for stabilizing the Asp632 loop in a retracted position that is required for the binding of the NADPH ribityl-nicotinamide in a hydride-transfer-competent conformation. Structures of the mutants and reduced wild type CYPOR permit us to identify a possible pathway for NADP(H) binding to and release from CYPOR. Asp632 mutants unable to form stable H-bonds with the backbone amides of Arg634, Asn635, and Met636 exhibit decreased catalytic activity and severely impaired hydride transfer from NADPH to FAD, but leave interflavin electron transfer intact. Intriguingly, the Arg634Ala mutation slightly increases the cytochrome P450 2B4 activity. We propose that Asp632 loop movement, in addition to facilitating NADP(H) binding and release, participates in domain movements modulating interflavin electron transfer.


Assuntos
NADPH-Ferri-Hemoproteína Redutase/química , NADPH-Ferri-Hemoproteína Redutase/metabolismo , NADP/metabolismo , Monofosfato de Adenosina/química , Monofosfato de Adenosina/metabolismo , Substituição de Aminoácidos , Animais , Cristalografia por Raios X , Transporte de Elétrons , Mononucleotídeo de Flavina/química , Mononucleotídeo de Flavina/metabolismo , Flavina-Adenina Dinucleotídeo/química , Flavina-Adenina Dinucleotídeo/metabolismo , Cinética , Modelos Moleculares , NADP/química , NADPH-Ferri-Hemoproteína Redutase/genética , Oxirredução , Mutação Puntual , Ligação Proteica , Conformação Proteica , Ratos
16.
Chem Commun (Camb) ; 53(95): 12798-12801, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29143058

RESUMO

Heme's spin-multiplicity is key in determining the enzymatic function of cytochrome P450 (cytP450). The origin of the low-spin state in ferric P450 is still under debate. Here, we report the first experimental demonstration of P450's membrane interaction altering its spin equilibrium which is accompanied by a stronger affinity for cytochrome b5. These results highlight the importance of lipid membrane for the function of P450.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Citocromos b5/metabolismo , Sistema Enzimático do Citocromo P-450/química , Citocromos b5/química , Modelos Moleculares
17.
Sci Rep ; 7(1): 7793, 2017 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-28798301

RESUMO

Cytochrome b 5 (cytb 5) is a membrane protein vital for the regulation of cytochrome P450 (cytP450) metabolism and is capable of electron transfer to many redox partners. Here, using cyt c as a surrogate for cytP450, we report the effect of membrane on the interaction between full-length cytb 5 and cyt c for the first time. As shown through stopped-flow kinetic experiments, electron transfer capable cytb 5 - cyt c complexes were formed in the presence of bicelles and nanodiscs. Experimentally measured NMR parameters were used to map the cytb 5-cyt c binding interface. Our experimental results identify differences in the binding epitope of cytb 5 in the presence and absence of membrane. Notably, in the presence of membrane, cytb 5 only engaged cyt c at its lower and upper clefts while the membrane-free cytb 5 also uses a distal region. Using restraints generated from both cytb 5 and cyt c, a complex structure was generated and a potential electron transfer pathway was identified. These results demonstrate the importance of studying protein-protein complex formation in membrane mimetic systems. Our results also demonstrate the successful preparation of novel peptide-based lipid nanodiscs, which are detergent-free and possesses size flexibility, and their use for NMR structural studies of membrane proteins.


Assuntos
Citocromos b5/química , Citocromos c/química , Elétrons , Bicamadas Lipídicas/química , Animais , Simulação de Dinâmica Molecular , Ligação Proteica , Coelhos
18.
Sci Rep ; 7(1): 4116, 2017 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-28646173

RESUMO

The dynamic protein-protein and protein-ligand interactions of integral bitopic membrane proteins with a single membrane-spanning helix play a plethora of vital roles in the cellular processes associated with human health and diseases, including signaling and enzymatic catalysis. While an increasing number of high-resolution structural studies of membrane proteins have successfully manifested an in-depth understanding of their biological functions, intact membrane-bound bitopic protein-protein complexes pose tremendous challenges for structural studies by crystallography or solution NMR spectroscopy. Therefore, there is a growing interest in developing approaches to investigate the functional interactions of bitopic membrane proteins embedded in lipid bilayers at atomic-level. Here we demonstrate the feasibility of dynamic nuclear polarization (DNP) magic-angle-spinning NMR techniques, along with a judiciously designed stable isotope labeling scheme, to measure atomistic-resolution transmembrane-transmembrane interactions of full-length mammalian ~72-kDa cytochrome P450-cytochrome b5 complex in lipid bilayers. Additionally, the DNP sensitivity-enhanced two-dimensional 13C/13C chemical shift correlations via proton driven spin diffusion provided distance constraints to characterize protein-lipid interactions and revealed the transmembrane topology of cytochrome b5. The results reported in this study would pave ways for high-resolution structural and topological investigations of membrane-bound full-length bitopic protein complexes under physiological conditions.


Assuntos
Sistema Enzimático do Citocromo P-450/química , Citocromos b5/química , Bicamadas Lipídicas/química , Complexos Multiproteicos/química , Ressonância Magnética Nuclear Biomolecular , Sequência de Aminoácidos , Animais , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Sistema Enzimático do Citocromo P-450/metabolismo , Citocromos b5/metabolismo , Humanos , Bicamadas Lipídicas/metabolismo , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Ressonância Magnética Nuclear Biomolecular/métodos , Ligação Proteica , Conformação Proteica
19.
Biochemistry ; 55(47): 6558-6567, 2016 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-27797496

RESUMO

Microsomal cytochromes P450 (P450) require two electrons and two protons for the oxidation of substrates. Although the two electrons can be provided by cytochrome P450 reductase, the second electron can also be donated by cytochrome b5 (b5). The steady-state activity of P450 2B4 is increased up to 10-fold by b5. To improve our understanding of the molecular basis of the stimulatory effect of b5 and to test the hypothesis that b5 stimulates catalysis by more rapid protonation of the anionic ferric hydroperoxo heme intermediate of P450 (Fe3+OOH)- and subsequent formation of the active oxidizing species (Fe+4═O POR•+), we have freeze-quenched the reaction mixture during a single turnover following reduction of oxyferrous P450 2B4 by each of its redox partners, b5 and P450 reductase. The electron paramagnetic resonance spectra of the freeze-quenched reaction mixtures lacked evidence of a hydroperoxo intermediate when b5 was the reductant presumably because hydroperoxo protonation and catalysis occurred within the dead time of the instrument. However, when P450 reductase was the reductant, a hydroperoxo P450 intermediate was observed. The effect of b5 on the enzymatic efficiency in D2O and the kinetic solvent isotope effect under steady-state conditions are both consistent with the ability of b5 to promote rapid protonation of the hydroperoxo species and more efficient catalysis. In summary, by binding to the proximal surface of P450, b5 stimulates the activity of P450 2B4 by enhancing the rate of protonation of the hydroperoxo intermediate and formation of Compound I, the active oxidizing species, which allows less time for side product formation.


Assuntos
Hidrocarboneto de Aril Hidroxilases/metabolismo , Citocromos b5/metabolismo , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Prótons , Animais , Biocatálise , Família 2 do Citocromo P450/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Elétrons , Hidrogenação , Cinética , Modelos Biológicos , NAD/metabolismo , Oxirredução , Ligação Proteica , Coelhos , Especificidade por Substrato
20.
Biochemistry ; 55(31): 4356-65, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27426448

RESUMO

Human cytochrome P450 17A1 is required for all androgen biosynthesis and is the target of abiraterone, a drug used widely to treat advanced prostate cancer. P450 17A1 catalyzes both 17-hydroxylation and subsequent 17,20-lyase reactions with pregnenolone, progesterone, and allopregnanolone. The presence of cytochrome b5 (b5) markedly stimulates the 17,20-lyase reaction, with little effect on 17-hydroxylation; however, the mechanism of this b5 effect is not known. We determined the influence of b5 on coupling efficiency-defined as the ratio of product formation to NADPH consumption-in a reconstituted system using these 3 pairs of substrates for the 2 reactions. Rates of NADPH consumption ranged from 4 to 13 nmol/min/nmol P450 with wild-type P450 17A1. For the 17-hydroxylase reaction, progesterone oxidation was the most tightly coupled (∼50%) and negligibly changed upon addition of b5. Rates of NADPH consumption were similar for the 17-hydroxylase and corresponding 17,20-lyase reactions for each steroid series, and b5 only slightly increased NADPH consumption. For the 17,20-lyase reactions, b5 markedly increased product formation and coupling in parallel with all substrates, from 6% to 44% with the major substrate 17-hydroxypregnenolone. For the naturally occurring P450 17A1 mutations E305G and R347H, which impair 17,20-lyase activity, b5 failed to rescue the poor coupling with 17-hydroxypregnenolone (2-4%). When the conserved active-site threonine was mutated to alanine (T306A), both the activity and coupling were markedly decreased with all substrates. We conclude that b5 stimulation of the 17,20-lyase reaction primarily derives from more efficient use of NADPH for product formation rather than side products.


Assuntos
Androgênios/biossíntese , Citocromos b5/metabolismo , Esteroide 17-alfa-Hidroxilase/química , Esteroide 17-alfa-Hidroxilase/metabolismo , Substituição de Aminoácidos , Androstenos/farmacologia , Domínio Catalítico , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Humanos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , NADP/metabolismo , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Esteroide 17-alfa-Hidroxilase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...