Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Biotechnol ; 7: 84, 2007 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-18047682

RESUMO

BACKGROUND: Antibody-dependent cellular cytotoxicity (ADCC) is greatly enhanced by the absence of the core fucose of oligosaccharides attached to the Fc, and is closely related to the clinical efficacy of anticancer activity in humans in vivo. Unfortunately, all licensed therapeutic antibodies and almost all currently-developed therapeutic antibodies are heavily fucosylated and fail to optimize ADCC, which leads to a large dose requirement at a very high cost for the administration of antibody therapy to cancer patients. In this study, we explored the possibility of converting already-established antibody-producing cells to cells that produce antibodies fully lacking core fucosylation in order to facilitate the rapid development of next-generation therapeutic antibodies. RESULTS: Firstly, loss-of-function analyses using small interfering RNAs (siRNAs) against the three key genes involved in oligosaccharide fucose modification, i.e. alpha1,6-fucosyltransferase (FUT8), GDP-mannose 4,6-dehydratase (GMD), and GDP-fucose transporter (GFT), revealed that single-gene knockdown of each target was insufficient to completely defucosylate the products in antibody-producing cells, even though the most effective siRNA (>90% depression of the target mRNA) was employed. Interestingly, beyond our expectations, synergistic effects of FUT8 and GMD siRNAs on the reduction in fucosylation were observed, but not when these were used in combination with GFT siRNA. Secondly, we successfully developed an effective short hairpin siRNA tandem expression vector that facilitated the double knockdown of FUT8 and GMD, and we converted antibody-producing Chinese hamster ovary (CHO) cells to fully non-fucosylated antibody producers within two months, and with high converting frequency. Finally, the stable manufacture of fully non-fucosylated antibodies with enhanced ADCC was confirmed using the converted cells in serum-free fed-batch culture. CONCLUSION: Our results suggest that FUT8 and GMD collaborate synergistically in the process of intracellular oligosaccharide fucosylation. We also demonstrated that double knockdown of FUT8 and GMD in antibody-producing cells could serve as a new strategy for producing next-generation therapeutic antibodies fully lacking core fucosylation and with enhanced ADCC. This approach offers tremendous cost- and time-sparing advantages for the development of next-generation therapeutic antibodies.


Assuntos
Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Fucosiltransferases/genética , Inativação Gênica/imunologia , Melhoramento Genético/métodos , Hidroliases/genética , Animais , Células CHO , Cricetinae , Cricetulus , Fucosiltransferases/imunologia , Hidroliases/imunologia , Engenharia de Proteínas/métodos
2.
J Biotechnol ; 130(3): 300-10, 2007 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-17559959

RESUMO

Currently, removal of core fucose from the Fc oligosaccharides of therapeutic antibodies is widely recognized as being of great importance for the effector function of antibody-dependent cellular cytotoxicity, and alpha-1,6-fucosyltransferase (FUT8) knockout cells have been generated as an ideal host cell line for manufacturing such therapeutics. Here, we attempted to identify genes other than FUT8 that could be targeted for the manufacture of non-fucosylated therapeutics. Loss-of-function analyses using siRNAs against three key genes involved in oligosaccharide fucosylation in Chinese hamster ovary (CHO) cells revealed that there was a positive correlation between the Fc oligosaccharide fucosylation and the mRNA expression through the origin in the cases of both GDP-fucose 4,6-dehydratase (GMD) and FUT8, but not for the GDP-fucose transporter, suggesting that there is no functional redundancy in GMD and FUT8. GMD knockout CHO/DG44 cells were successfully established, and were confirmed to be devoid of intracellular GDP-fucose and to produce completely non-fucosylated antibodies. GMD knockout cells recovered their fucosylation capability through the salvage pathway upon addition of l-fucose into the culture medium, and exhibited equable morphology, growth kinetics and recombinant protein productivity, demonstrating that loss of oligosaccharide fucosylation has no impact on these cellular phenotypes. Our results demonstrate that GMD knockout is a new strategy applicable to the manufacture of non-fucosylated therapeutic antibodies, and completely O-fucose-negative therapeutics as well.


Assuntos
Biotecnologia/métodos , Fucose/metabolismo , Hidroliases/deficiência , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/farmacologia , Animais , Antígenos CD20/imunologia , Células CHO , Cricetinae , Cricetulus , Meios de Cultura Livres de Soro , DNA Complementar , Fucosiltransferases/genética , Fucosiltransferases/metabolismo , Regulação Enzimológica da Expressão Gênica , Humanos , Hidroliases/genética , Hidroliases/metabolismo , Imunoglobulina G/imunologia , Camundongos , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Oligossacarídeos/metabolismo , Lectinas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo
3.
Cytotechnology ; 55(2-3): 109-14, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19003000

RESUMO

Therapeutic antibody IgG1 has two N-linked oligosaccharide chains bound to the Fc region. The oligosaccharides are of the complex biantennary type, composed of a trimannosyl core structure with the presence or absence of core fucose, bisecting N-acetylglucosamine (GlcNAc), galactose, and terminal sialic acid, which gives rise to structural heterogeneity. Both human serum IgG and therapeutic antibodies are well known to be heavily fucosylated. Recently, antibody-dependent cellular cytotoxicity (ADCC), a lytic attack on antibody-targeted cells, has been found to be one of the critical effector functions responsible for the clinical efficacy of therapeutic antibodies such as anti-CD20 IgG1 rituximab (Rituxan((R))) and anti-Her2/neu IgG1 trastuzumab (Herceptin((R))). ADCC is triggered upon the binding of lymphocyte receptors (FcgammaRs) to the antibody Fc region. The activity is dependent on the amount of fucose attached to the innermost GlcNAc of N-linked Fc oligosaccharide via an alpha-1,6-linkage, and is dramatically enhanced by a reduction in fucose. Non-fucosylated therapeutic antibodies show more potent efficacy than their fucosylated counterparts both in vitro and in vivo, and are not likely to be immunogenic because their carbohydrate structures are a normal component of natural human serum IgG. Thus, the application of non-fucosylated antibodies is expected to be a powerful and elegant approach to the design of the next generation therapeutic antibodies with improved efficacy. In this review, we discuss the importance of the oligosaccharides attached to the Fc region of therapeutic antibodies, especially regarding the inhibitory effect of fucosylated therapeutic antibodies on the efficacy of non-fucosylated counterparts in one medical agent. The impact of completely non-fucosylated therapeutic antibodies on therapeutic fields will be also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...