Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 63(7): 1681-1694, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38437267

RESUMO

We report performance of a satellite-borne coherent Doppler wind lidar (SCDWL), which equips a planer waveguide amplifier (PWA) operating in a wavelength of 1.5 µm. The performance is defined by detection probability, measurement precision, and bias, and is characterized with a Doppler wind lidar (DWL) simulation that considers a realistic wind velocity profile, and instrumental and atmospheric parameters. Among the parameters, we carefully model those related to the PWA whose figure of merit has great impact on the performance of SCDWL and has shown rapid improvement in recent years. Moreover, we introduce three models for a backscattering coefficient (high, moderate, and low) to assess the influence from variation of atmospheric backscattering. Our simulation demonstrates that the SCDWL can work with reasonable performance for the target altitude of 6 km in the case of the high-backscattering model. The simulation also exhibits that the SCDWL can observe wind velocity at the altitude of 12 km if improved instrumental parameters or higher backscattering coefficients are considered. In addition, we reveal that non-uniform wind velocity distribution degrades the performance of the SCDWL and induces a bias between measured and real wind velocity.

2.
Opt Express ; 30(11): 20038-20062, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-36221764

RESUMO

The intelligent and compact coherent Doppler lidar (CDL) for wind sensing is demonstrated. The configuration is fiber-based. Several functions for the robust wind sensing in various atmospheric and environmental conditions are shown. The main feature of this CDL is the intelligent functions of the beam focusing, spectral accumulation, and window wiping. The supplemental functions of the robust noise floor reduction and motion compensation are also introduced. The effect of the above-mentioned main feature is demonstrated for the improvement of data availability. The evaluation results of the highly accurate wind velocity measurement are additionally shown.

3.
Appl Opt ; 61(2): 352-361, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35200869

RESUMO

We have developed an active alignment of receiving beam (AARB) function for coaxial optics in wind sensing coherent Doppler lidar using feedback control based on the heterodyne-detected signal processing of backscattered light from the aerosols. The proposed method needs only the simple alignment components and contributes to the robustness for the coherent lidars with the high-power laser transmitter under the risky condition of misalignment, for example, in the airborne application. The concept, design, and evaluation results of the alignment precision are shown. The effect of the AARB is demonstrated for both cases of the hard target and soft target (i.e., wind sensing). To the best of our knowledge, this is the first demonstration of the AARB concept for the wind sensing coherent lidar.

4.
Opt Express ; 28(18): 27078-27096, 2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32906968

RESUMO

The 1.53-µm coherent differential absorption lidar (DIAL) is demonstrated for the simultaneous profiling of water vapor (H2O) density and wind speed. The optical setup is fiber-based. The wavelength locking circuit can achieve precise locking of 13.0 MHz by the combination of the line center locking to the hydrogen cyanide (HCN) absorption line and offset locking to the H2O absorption wavelength. The measurable range for the simultaneous profiling is up to 1.2 km. The DIAL-measured H2O density is compared with the one measured by an in-situ sensor. Qualitative good agreement is shown with the random error of 0.56 g/m3.

5.
Appl Opt ; 59(8): 2238-2247, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32225753

RESUMO

A feasibility study of coherent differential absorption lidar is conducted using a 1.53-µm wavelength for simultaneously retrieving the water vapor density and wind speed profiles. We selected the ON and OFF wavelengths to be 1531.383 and 1531.555 nm, respectively, for minimizing the effect of the temperature change in the atmosphere. The systematic measurement error can be reduced to below 5% by stabilizing the ON wavelength from ${-64}$-64 to 102 MHz around the center of the water vapor absorption line. Analysis of the speckle and photon statistics errors reveal that the relative error of the water vapor density is less than 10% at the altitude from 0.1 to 1.7 km with the 100 m range resolution with 10 min data accumulation time. The simultaneous measurement of wind speed and direction can also be achieved by employing a conical scan mechanism.

7.
Opt Lett ; 37(13): 2688-90, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22743496

RESUMO

We have demonstrated the laser-absorption spectrometer system using frequency chirped intensity modulation at 1.57 µm wavelength for measurement of CO(2) concentration. Using this technique, backscattered laser radiation from different ranges can be discriminated in the frequency domain of the electrical signal. We have reported the discrimination of two signals from the targets with different ranges. It is shown that stable measurements with short time fluctuation corresponding to 4 ppm (rms) were obtained with 32 s measurement intervals. Furthermore, there is qualitative good agreement on, at least, the diurnal changes between the results of the laser absorption spectrometer system and the in-situCO(2) sensor.

8.
Appl Opt ; 50(14): 2055-68, 2011 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-21556107

RESUMO

A feasibility study is carried out on a 1.6 µm continuous-wave modulation laser absorption spectrometer system for measurement of global CO(2)concentration from a satellite. The studies are performed for wavelength selection and both systematic and random error analyses. The systematic error in the differential absorption optical depth (DAOD) is mainly caused by the temperature estimation error, surface pressure estimation error, altitude estimation error, and ON wavelength instability. The systematic errors caused by unwanted backscattering from background aerosols and dust aerosols can be reduced to less than 0.26% by using a modulation frequency of around 200 kHz, when backscatter coefficients of these unwanted backscattering have a simple profile on altitude. The influence of backscattering from cirrus clouds is much larger than that of dust aerosols. The transmission power required to reduce the random error in the DAOD to 0.26% is determined by the signal-to-noise ratio and the carrier-to-noise ratio calculations. For a satellite altitude of 400 km and receiving aperture diameter of 1 m, the required transmission power is approximately 18 W and 70 W when albedo is 0.31 and 0.08, respectively; the total measurement time in this case is 4 s, which corresponds to a horizontal resolution of 28 km.

9.
Appl Opt ; 50(11): 1560-9, 2011 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-21478929

RESUMO

In a previous study, we developed a 1.6 µm continuous-wave (cw) modulation laser absorption spectrometer system for CO(2) sensing and demonstrated the measurement of small fluctuations in CO(2) corresponding to a precision of 4 parts per million (ppm) with a measurement interval of 32 s. In this paper, we present the process to achieve this highly specific measurement by introducing important points, which have not been shown in the previous study. Following the results of preliminary experiments, we added a function for speckle averaging on the optical antenna unit. We additionally came up with some ideas to avoid the influences of etalon effects and polarization dependence in optical components. Because of the new functions, we realized a calibration precision of 0.006 dB (rms), which corresponds to a CO(2) concentration precision of less than 1 ppm for a 2 km path. We also analyzed the CO(2) sensing performance after the improvements described above. The measured short time fluctuation of the differential absorption optical depth was reasonably close to that calculated using the carrier-to-noise ratio of the received signal.

10.
Opt Lett ; 34(10): 1513-5, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19448805

RESUMO

We have demonstrated the 1.6 mum cw modulation hard-target differential absorption lidar system for CO(2) sensing. In this system, ON and OFF wavelength laser lights are intensity modulated with cw signals. Received lights of the two wavelengths from the hard target are discriminated by modulation frequencies in the electrical signal domain. The optical circuit is fiber based, and this makes the system compact and reliable. It is shown that a stable CO(2) concentration measurement corresponding to a fluctuation of 4 ppm (rms) (ppm is parts per million) has been achieved in 32 s measurement intervals and the 1 km path.

11.
Opt Lett ; 32(13): 1923-5, 2007 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-17603615

RESUMO

A remote methane detection system has been developed using a single-frequency tunable optical parametric oscillator at 3.4 microm infrared wavelength. The infrared received light is converted by a frequency upconverter with a strong pump beam to near-infrared wavelength at 0.81 microm and detected by a sensitive photomultiplier. The conversion efficiency of the upconverter was 40% for the backscatter signal from a topographic target, and the detector sensitivity was 11 times higher than that of the cooled InAs detector. By raster scanning the infrared beam, imaging was realized for the methane gas plume with an accuracy of 20 parts in 10(6)m at the range of ~2m.

12.
Appl Opt ; 44(28): 6023-30, 2005 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-16231810

RESUMO

An ultraviolet incoherent Doppler lidar that incorporates the high-spectral-resolution (HSR) technique has been developed for measuring the wind field and aerosol optical properties in the troposphere. An injection seeded and tripled Nd:YAG laser at an ultraviolet wavelength of 355 nm was used in the lidar system. The HRS technique can resolve the aerosol Mie backscatter and the molecular Rayleigh backscatter to derive the signal components. By detecting the Mie backscatter, a great increase in the Doppler filter sensitivity was realized compared to the conventional incoherent Doppler lidars that detected the Rayleigh backscatter. The wind velocity distribution in a two-dimensional cross section was measured. By using the HSR technique, multifunction and absolute value measurements were realized for aerosol extinction, and volume backscatter coefficients; the laser beam transmittance, the lidar ratio, and the backscatter ratio are derived from these measurements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...