Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(46): 29212-29220, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33139564

RESUMO

While the mechanisms generating the topographic organization of primary sensory areas in the neocortex are well studied, what generates secondary cortical areas is virtually unknown. Using physical parameters representing primary and secondary visual areas as they vary from monkey to mouse, we derived a network growth model to explore if characteristic features of secondary areas could be produced from correlated activity patterns arising from V1 alone. We found that V1 seeded variable numbers of secondary areas based on activity-driven wiring and wiring-density limits within the cortical surface. These secondary areas exhibited the typical mirror-reversal of map topography on cortical area boundaries and progressive reduction of the area and spatial resolution of each new map on the caudorostral axis. Activity-based map formation may be the basic mechanism that establishes the matrix of topographically organized cortical areas available for later computational specialization.


Assuntos
Evolução Biológica , Neocórtex/crescimento & desenvolvimento , Animais , Encéfalo/crescimento & desenvolvimento , Macaca mulatta , Camundongos , Modelos Biológicos , Rede Nervosa , Córtex Somatossensorial , Córtex Visual
2.
Nat Mach Intell ; 2(3): 181-191, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38650843

RESUMO

We present a neural algorithm for the rapid online learning and identification of odourant samples under noise, based on the architecture of the mammalian olfactory bulb and implemented on the Intel Loihi neuromorphic system. As with biological olfaction, the spike timing-based algorithm utilizes distributed, event-driven computations and rapid (one-shot) online learning. Spike timing-dependent plasticity rules operate iteratively over sequential gamma-frequency packets to construct odour representations from the activity of chemosensor arrays mounted in a wind tunnel. Learned odourants then are reliably identified despite strong destructive interference. Noise resistance is further enhanced by neuromodulation and contextual priming. Lifelong learning capabilities are enabled by adult neurogenesis. The algorithm is applicable to any signal identification problem in which high-dimensional signals are embedded in unknown backgrounds.

3.
Science ; 345(6197): 668-73, 2014 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-25104385

RESUMO

Inspired by the brain's structure, we have developed an efficient, scalable, and flexible non-von Neumann architecture that leverages contemporary silicon technology. To demonstrate, we built a 5.4-billion-transistor chip with 4096 neurosynaptic cores interconnected via an intrachip network that integrates 1 million programmable spiking neurons and 256 million configurable synapses. Chips can be tiled in two dimensions via an interchip communication interface, seamlessly scaling the architecture to a cortexlike sheet of arbitrary size. The architecture is well suited to many applications that use complex neural networks in real time, for example, multiobject detection and classification. With 400-pixel-by-240-pixel video input at 30 frames per second, the chip consumes 63 milliwatts.


Assuntos
Interfaces Cérebro-Computador , Encéfalo , Simulação por Computador , Redes Neurais de Computação , Neurônios , Software , Sinapses
4.
Front Neurosci ; 6: 83, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22685425

RESUMO

We present a biomimetic system that captures essential functional properties of the glomerular layer of the mammalian olfactory bulb, specifically including its capacity to decorrelate similar odor representations without foreknowledge of the statistical distributions of analyte features. Our system is based on a digital neuromorphic chip consisting of 256 leaky-integrate-and-fire neurons, 1024 × 256 crossbar synapses, and address-event representation communication circuits. The neural circuits configured in the chip reflect established connections among mitral cells, periglomerular cells, external tufted cells, and superficial short-axon cells within the olfactory bulb, and accept input from convergent sets of sensors configured as olfactory sensory neurons. This configuration generates functional transformations comparable to those observed in the glomerular layer of the mammalian olfactory bulb. Our circuits, consuming only 45 pJ of active power per spike with a power supply of 0.85 V, can be used as the first stage of processing in low-power artificial chemical sensing devices inspired by natural olfactory systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...