Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stapp Car Crash J ; 61: 355-371, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29394445

RESUMO

This study aimed to clarify the relationship between truck-cyclist collision impact velocity and the serious-injury and fatality risks to cyclists, and to investigate the effects of road type and driving scenario on the frequency of cyclist fatalities due to collisions with vehicles. We used micro and macro truck-cyclist collision data from the Japanese Institute for Traffic Accident Research and Data Analysis (ITARDA) database. We classified vehicle type into five categories: heavy-duty trucks (gross vehicle weight [GVW] ≥11 × 103 kg [11 tons (t)], medium-duty trucks (5 × 103 kg [5 t] ≤ GVW < 11 × 103 kg [11 t]), light-duty trucks (GVW <5 × 103 kg [5 t]), box vans, and sedans. The fatality risk was ≤5% for light-duty trucks, box vans, and sedans at impact velocities ≤40 km/h and for medium-duty trucks at impact velocities ≤30 km/h. The fatality risk was 6% for heavy-duty trucks at impact velocities ≤10 km/h. Thus, the fatality risk appears strongly associated with vehicle class and impact velocity. The results revealed that a 10 km/h reduction in impact velocities could mitigate the severity of cyclist injuries at impact velocities ≥30 km/h for all five vehicle types. The frequency of cyclist fatalities at intersections with traffic signals involving heavy-duty trucks was significantly higher during daytime than that at nighttime. Fatalities involving vehicles making a left turn generally increased with vehicle weight. The frequency of cyclist fatalities involving vehicles making a left turn was the largest for heavy-duty trucks both during daytime (67.6%) and at nighttime (52.3%).


Assuntos
Acidentes de Trânsito/mortalidade , Veículos Automotores , Ferimentos e Lesões/epidemiologia , Ciclismo , Bases de Dados Factuais , Humanos , Japão/epidemiologia , Risco , Índices de Gravidade do Trauma , Ferimentos e Lesões/mortalidade
2.
Stapp Car Crash J ; 60: 165-182, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27871097

RESUMO

This study aimed to clarify the relationship between truck-pedestrian crash impact velocity and the risks of serious injury and fatality to pedestrians. We used micro and macro truck-pedestrian accident data from the Japanese Institute for Traffic Accident Research and Data Analysis (ITARDA) database. We classified vehicle type into five categories: heavy-duty trucks (gross vehicle weight [GVW] ≥11 × 103 kg [11 tons (t)], medium-duty trucks (5 × 103 kg [5 t] ≤ GVW < 11 × 103 kg [11 t]), light-duty trucks (GVW <5 × 103 kg [5 t]), box vans, and sedans. The fatality risk was ≤5% for light-duty trucks, box vans, and sedans at impact velocities ≤ 30 km/h and for medium-duty trucks at impact velocities ≤20 km/h. The fatality risk was ≤10% for heavy-duty trucks at impact velocities ≤10 km/h. Thus, fatality risk appears strongly associated with vehicle class. The results also revealed that a 10 km/h reduction in impact velocities could mitigate the severity of pedestrian injuries at impact velocities ≥30 km/h for all five analyzed vehicle types. Therefore, serious injuries and fatalities to pedestrians could be decreased by the development and deployment of collision mitigation systems (CMSs) to all vehicles, including to commercial trucks, because CMSs can detect pedestrians in even severe conditions, such as when the drive's view is obstructed, and can reduce the impact velocity. The present results indicate that CMS design specifications should differ between vehicle types because of the strong dependence of seriousinjury and fatality risks on vehicle type.


Assuntos
Acidentes de Trânsito/mortalidade , Veículos Automotores , Pedestres , Ferimentos e Lesões/mortalidade , Aceleração , Bases de Dados Factuais , Humanos , Japão , Índices de Gravidade do Trauma
3.
Rev Sci Instrum ; 84(7): 073111, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23902048

RESUMO

We report a method to focus the electron beam generated using a pyroelectric crystal. An electron beam with a spot size of 100 µm was achieved by applying an electrical field to an electroconductive needle tip set on a pyroelectric crystal. When the focused electron beam bombarded a sample, characteristic X-rays of the sample were only detected due to the production of an electric field between the needle tip and the sample.

4.
Anal Chem ; 83(22): 8363-5, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22017251

RESUMO

A miniaturized electron probe X-ray microanalyzer (EPMA) with a small chamber including the electron source and the sample stage was realized using a pyroelectric crystal as an electron source. The EPMA we propose is the smallest reported so far. Performance of the EPMA was evaluated by investigating energy of obtained continuous X-rays and lower detection limits of transition metals (titanium, iron, and nickel). End point energy (Duane-Hunt limit) of continuous X-rays of 45 keV was obtained. However, it is expected that the EPMA can analyze characteristic X-rays with energy less than 20 keV. The EPMA was able to measure titanium, iron, and nickel wires whose projected areas were more than 0.03 mm(2).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...