Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 12(44): 28490-28493, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36320529

RESUMO

We report a [3+2] cycloaddition using 3,6-bis-propargyloxy-1,2,4,5-tetrazine and azides to synthesize energetic polymers containing 1,2,4,5-tetrazine within the scaffold. This work also includes [3+2] cycloaddition to crosslink azide containing glycidyl azide polymer (GAP). These reactions provide pathways for incorporation of 1,2,4,5-tetrazine into novel energetic materials using click-chemistry and provide an alternative polymer curing approach.

2.
J Med Chem ; 62(13): 6287-6314, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31257877

RESUMO

Because of the large degree of homology among dopamine D2-like receptors, discovering ligands capable of discriminating between the D2, D3, and D4 receptor subtypes remains a significant challenge. Previous work has exemplified the use of bitopic ligands as a powerful strategy in achieving subtype selectivity for agonists and antagonists alike. Inspired by the potential for chemical modification of the D3 preferential agonists (+)-PD128,907 (1) and PF592,379 (2), we synthesized bitopic structures to further improve their D3R selectivity. We found that the (2S,5S) conformation of scaffold 2 resulted in a privileged architecture with increased affinity and selectivity for the D3R. In addition, a cyclopropyl moiety incorporated into the linker and full resolution of the chiral centers resulted in lead compound 53 and eutomer 53a that demonstrate significantly higher D3R binding selectivities than the reference compounds. Moreover, the favorable metabolic stability in rat liver microsomes supports future studies in in vivo models of dopamine system dysregulation.


Assuntos
Agonistas de Dopamina/química , Agonistas de Dopamina/metabolismo , Indóis/química , Indóis/metabolismo , Receptores de Dopamina D3/metabolismo , Animais , Agonistas de Dopamina/síntese química , Desenho de Fármacos , Células HEK293 , Humanos , Indóis/síntese química , Ligantes , Microssomos Hepáticos/metabolismo , Ratos , Estereoisomerismo , Relação Estrutura-Atividade
3.
Angew Chem Int Ed Engl ; 56(13): 3575-3578, 2017 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-28230299

RESUMO

This study presents the synthesis and characterization of the oxidation products of 3,6-diazido-1,2,4,5-tetrazine (1) and 6-amino-[1,5-b]tetrazolo-1,2,4,5-tetrazine (2). 3,6-Diazido-1,2,4,5-tetrazine-1,4-dioxide was produced from oxidation with peroxytrifluoroacetic acid, and more effectively using hypofluorous acid, and 2 can be oxidized to two different products, 6-amino-[1,5-b]tetrazolo-1,2,4,5-tetrazine mono-N-oxide and di-N-oxide. These N-oxide compounds display promising performance properties as energetic materials.

4.
Angew Chem Int Ed Engl ; 55(49): 15315-15318, 2016 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-27862728

RESUMO

The reaction of 3-amino-5-nitro-1,2,4-triazole with nitrous acid produces the corresponding diazonium salt. When the diazonium salt is treated with nitroacetonitrile, a subsequent condensation and cyclization reaction occurres to produced 4-amino-3,7-dinitrotriazolo-[5,1-c][1,2,4] triazine (DPX-26). X-ray crystallographic analysis shows that the DPX-26 has a density of 1.86 g cm-3 , while it is calculated to have a heat of formation of 398.3 kJ mol-1 . DPX-26 is predicted to approach the explosive performance of RDX but displays significantly better safety properties. Oxidation of DPX-26 using hypofluorous acid produces 4-amino-3,7-dinitrotriazolo-[5,1-c][1,2,4] triazine 4-oxide (DPX-27), which is also predicted to be a high-performance material with enhanced safety properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...