Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1305: 342582, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38677838

RESUMO

BACKGROUND: Detecting and neutralizing Pd2+ ions are a significant challenge due to their cytotoxicity, even at low concentrations. To address this issue, various chemosensors have been designed for advanced detection systems, offering simplicity and the potential to differentiate signals from different analytes. Nonetheless, these chemosensors often suffer from limited emission response and complex synthesis procedures. As a result, the tracking and quantification of residual palladium in biological systems and environments remain challenging tasks, with only a few chemosensing probes available for commercial use. RESULTS: In this paper, a straightforward approach for the selective detection of Pd2+ ions is proposed, which involves the design, synthesis, and utilization of a propargylated naphthalene-derived probe (E)-N'-((2-(prop-2-yn-1-yloxy)naphthalen-1-yl)methylene)benzohydrazide (NHP). The NHP probe exhibits sensitive dual-channel colorimetry and fluorescence Pd2+ detection over other tested metal ions. The detection process is performed through a catalytic depropargylation reaction, followed by an excited state intramolecular proton transfer (ESIPT) process, the detection limit is as low as 11.58 × 10-7 M under mild conditions. Interestingly, the resultant chemodosimeter adduct (E)-N'-((2-hydroxynaphthalen-1-yl)methylene)benzohydrazide (NHH) was employed for the consecutive detection of CN- ions, exhibiting an impressive detection limit of 31.79 × 10-8 M. Validation of both detection processes was achieved through 1H nuclear magnetic resonance and density functional theory calculations. For real-time applications of the NHP and NHH probes, smartphone-assisted detection, and intracellular detection of Pd2+ and CN- ions within HeLa cells were studied. SIGNIFICANCE: This research presents a novel naphthalene derivative for visually detecting environmentally toxic Pd2+ and CN- ions. The synthesized probe selectively binds to Pd2+, forming a chemodosimeter. It successfully detects CN- ions through colorimetry and fluorimetry, offering a low detection limit and quick response. Notably, it's the first naphthalene-based small molecule to serve as a dual probe for toxic analytes - palladium and cyanide. Moreover, it effectively detects Pd2+ and CN- intracellularly in cancer cells.


Assuntos
Corantes Fluorescentes , Paládio , Paládio/química , Humanos , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Cianetos/análise , Naftalenos/química , Naftalenos/toxicidade , Células HeLa , Imagem Óptica , Limite de Detecção , Colorimetria/métodos , Estrutura Molecular , Espectrometria de Fluorescência
2.
J Agric Food Chem ; 71(1): 802-814, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36548786

RESUMO

Three simple dipodal artificial acyclic symmetric receptors, SDO, SDM, and SDP, driven by positional isomerism based on xylelene scaffolds were designed, synthesized, and characterized by 1H NMR, 13C NMR, and mass spectroscopy techniques. Probes SDO, SDM, and SDP demonstrated selective detection of Ag+ metal ions and amino acid l-histidine in a DMSO-H2O solution (1:1 v/v, HEPES 50 mM, pH = 7.4). The detection of Ag+ metal ions occurred in three ways: (i) inhibition of the photoinduced electron-transfer (PET) process, (ii) blueshifted fluorescence enhancement via the intramolecular charge-transfer (ICT) process, and (iii) restricted rotation of the dangling benzylic scaffold following coordination with a Ag+ metal ion. Job's plot analysis and quantum yields confirm the binding of probes to Ag+ in 1:1, 1:2, and 1:2 ratios with LODs and LOQs found to be 1.3 µM and 3.19 × 10-7 M, 6.40 × 10-7 and 2.44 × 10 -6 M, and 9.76 × 10-7 and 21.01 × 10-7 M, respectively. 1H NMR titration, HRMS, ESI-TOF, IR analysis, and theoretical DFT investigations were also used to establish the binding stoichiometry. Furthermore, the probes were utilized for the detection of Ag+ ions in water samples, food samples, soil analysis, and bacterial imaging in Escherichia coli cells and a molecular logic gate was constructed.


Assuntos
Corantes Fluorescentes , Prata , Prata/análise , Corantes Fluorescentes/química , Isomerismo , Histidina , Espectrometria de Fluorescência/métodos , Íons/química
3.
Food Chem ; 371: 131130, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34583179

RESUMO

A quinoline-naphthalene duo-based Schiff base probe (R) was synthesized and characterized by the usual spectroscopic and single-crystal X-ray crystallographic techniques. Probe R detects Al3+ and HSO3- ions via the fluorescent turn-on approach by dual pathways i.e., i) when probe R interacts with Al3+, the restriction of CN single bond rotation, blocking of both photoinduced electron transfer (PET) and CN isomerization were observed, and ii) when the sensor R interacts with HSO3-, imine (CH = N) bond was cleaved via hydrolysis and produced the respective aldehyde and amine behaving as a chemodosimeter. The binding stoichiometric ratio of R + Al3+ (1:1) was confirmed by Job's plot, emission titration profile, NMR, and mass spectrometric analyses. This probe R is highly selective to both Al3+ -ions and HSO3- -ions, without any interference of other potentially competing cations and anions. Limit of detection (LOD) and quantification (LOQ) of R with Al3+ and HSO3- were downed to nanomolar concentrations, which is much lower than the recommended level of drinking water/food fixed by the World Health Organization (WHO). Furthermore, probe R was utilized in the detection of Al3+ and HSO3- ions in highly contaminated real samples, bioimaging in E. coli cells, multiple-targeting molecular logic gate, and in bovine serum albumin (BSA) binding.


Assuntos
Alumínio , Quinolinas , Cátions , Escherichia coli , Corantes Fluorescentes , Naftalenos , Espectrometria de Fluorescência , Sulfitos
4.
ACS Omega ; 5(6): 3055-3072, 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32095729

RESUMO

A simple S-S (disulfide)-bridged dimeric Schiff base probe, L, has been designed, synthesized, and successfully characterized for the specific recognition of Al3+ and Fe2+ ions as fluorometric and colorimetric "turn-on" responses in a dimethylformamide (DMF)-H2O solvent mixture, respectively. The probe L and each metal ion bind through a 1:1 complex stoichiometry, and the plausible sensing mechanism is proposed based on the inhibition of the photoinduced electron transfer process (PET). The reversible chemosensor L showed high sensitivity toward Al3+ and Fe2+ ions, which was analyzed by fluorescence and UV-vis spectroscopy techniques up to nanomolar detection limits, 38.26 × 10-9 and 17.54 × 10-9 M, respectively. These experimental details were advocated by density functional theory (DFT) calculations. The practical utility of the chemosensor L was further demonstrated in electrochemical sensing, in vitro antimicrobial activity, molecular logic gate function, and quantification of the trace amount of Al3+ and Fe2+ ions in real water samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...