Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Channels (Austin) ; 16(1): 113-126, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35548926

RESUMO

CACNA1A-associated epilepsy and ataxia frequently accompany cognitive impairments as devastating co-morbidities. However, it is unclear whether the cognitive deficits are consequences secondary to the neurological symptoms elicited by CACNA1A mutations. To address this issue, Cacna1a mutant mice tottering (tg), and in particular tg/+ heterozygotes, serve as a suitable model system, given that tg/+ heterozygotes fail to display spontaneous absence epilepsy and ataxia typically observed in tg/tg homozygotes. Here, we examined hippocampus-dependent behaviors and hippocampal learning-related synaptic plasticity in tg mice. In behavioral analyses of tg/+ and tg/tg, acquisition and retention of spatial reference memory were characteristically impaired in the Morris water maze task, while working memory was intact in the eight-arm radial maze and T-maze tasks. tg/+ heterozygotes showed normal motor function in contrast to tg/tg homozygotes. In electrophysiological analyses, Schaffer collateral-CA1 synapses showed a deficit in the maintenance of long-term potentiation in tg/+ and tg/tg mice and an increased paired-pulse facilitation induced by paired pulses with 100 ms in tg/tg mice. Our results indicate that the tg mutation causes a dominant disorder of the hippocampus-related memory and synaptic plasticity, raising the possibility that in CACNA1A-associated human diseases, functionally aberrant CaV2.1 Ca2+ channels actively induce the observed cognitive deficits independently of the neurological symptoms.


Assuntos
Epilepsia , Hipocampo , Animais , Ataxia/genética , Cognição , Heterozigoto , Hipocampo/fisiologia , Camundongos , Plasticidade Neuronal/fisiologia
2.
Anesthesiology ; 134(1): 88-102, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33166389

RESUMO

BACKGROUND: Although the widely used single L-enantiomers of local anesthetics have less toxic effects on the cardiovascular and central nervous systems, the mechanisms mediating their antinociceptive actions are not well understood. The authors hypothesized that significant differences in the ion channel blocking abilities of the enantiomers of bupivacaine would be identified. METHODS: The authors performed electrophysiologic analysis on rat dorsal root ganglion neurons in vitro and on spinal transmissions in vivo. RESULTS: In the dorsal root ganglion, these anesthetics decreased the amplitudes of action potentials. The half-maximum inhibitory concentrations of D-enantiomer D-bupivacaine were almost equal for Aß (29.5 µM), Aδ (29.7µM), and C (29.8 µM) neurons. However, the half-maximum inhibitory concentrations of L-bupivacaine was lower for Aδ (19.35 µM) and C (19.5 µM) neurons than for A ß (79.4 µM) neurons. Moreover, D-bupivacaine almost equally inhibited tetrodotoxin-resistant (mean ± SD: 15.8 ± 10.9% of the control, n = 14, P < 0.001) and tetrodotoxin-sensitive (15.4 ± 15.6% of the control, n = 11, P = 0.004) sodium currents. In contrast, L-bupivacaine suppressed tetrodotoxin-resistant sodium currents (26.1 ± 19.5% of the control, n = 18, P < 0.001) but not tetrodotoxin-sensitive sodium currents (74.5 ± 18.2% of the control, n = 11, P = 0.477). In the spinal dorsal horn, L-bupivacaine decreased the area of pinch-evoked excitatory postsynaptic currents (39.4 ± 11.3% of the control, n = 7, P < 0.001) but not touch-evoked responses (84.2 ± 14.5% of the control, n = 6, P = 0.826). In contrast, D-bupivacaine equally decreased pinch- and touch-evoked responses (38.8 ± 9.5% of the control, n = 6, P = 0.001, 42.9 ± 11.8% of the control, n = 6, P = 0.013, respectively). CONCLUSIONS: These results suggest that the L-enantiomer of bupivacaine (L-bupivacaine) effectively inhibits noxious transmission to the spinal dorsal horn by blocking action potential conduction through C and Aδ afferent fibers.


Assuntos
Anestésicos Locais/farmacologia , Bupivacaína/farmacologia , Neurônios/efeitos dos fármacos , Nociceptividade/efeitos dos fármacos , Nervos Periféricos/efeitos dos fármacos , Células do Corno Posterior/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Animais , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Masculino , Fibras Nervosas Mielinizadas/efeitos dos fármacos , Fibras Nervosas Amielínicas/efeitos dos fármacos , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Canais de Sódio/efeitos dos fármacos , Estereoisomerismo , Tetrodotoxina/farmacologia
3.
Eur J Pharmacol ; 883: 173378, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32710951

RESUMO

The slowly and rapidly activating delayed rectifier K+ channels (IKs and IKr, respectively) contribute to the repolarization of ventricular action potential in human heart and thereby determine QT interval on an electrocardiogram. Loss-of-function mutations in genes encoding IKs and IKr cause type 1 and type 2 long QT syndrome (LQT1 and LQT2, respectively), accompanied by a high risk of malignant ventricular arrhythmias and sudden cardiac death. This study was designed to investigate which cardiac electrophysiological conditions exaggerate QT-prolonging and arrhythmogenic effects of sevoflurane. We used the O'Hara-Rudy dynamic model to reconstruct human ventricular action potential and a pseudo-electrocardiogram, and simulated LQT1 and LQT2 phenotypes by decreasing conductances of IKs and IKr, respectively. Sevoflurane, but not propofol, prolonged ventricular action potential duration and QT interval in wild-type, LQT1 and LQT2 models. The QT-prolonging effect of sevoflurane was more profound in LQT2 than in wild-type and LQT1 models. The potent inhibitory effect of sevoflurane on IKs was primarily responsible for its QT-prolonging effect. In LQT2 model, IKs was considerably enhanced during excessive prolongation of ventricular action potential duration by reduction of IKr and relative contribution of IKs to ventricular repolarization was markedly elevated, which appears to underlie more pronounced QT-prolonging effect of sevoflurane in LQT2 model, compared with wild-type and LQT1 models. This simulation study clearly elucidates the electrophysiological basis underlying the difference in QT-prolonging effect of sevoflurane among wild-type, LQT1 and LQT2 models, and may provide important information for developing anesthetic strategies for patients with long QT syndrome in clinical settings.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Ventrículos do Coração/efeitos dos fármacos , Síndrome do QT Longo/induzido quimicamente , Modelos Cardiovasculares , Miócitos Cardíacos/efeitos dos fármacos , Síndrome de Romano-Ward/induzido quimicamente , Sevoflurano/toxicidade , Estudos de Casos e Controles , Simulação por Computador , Canais de Potássio de Retificação Tardia/genética , Canais de Potássio de Retificação Tardia/metabolismo , Ventrículos do Coração/metabolismo , Ventrículos do Coração/fisiopatologia , Humanos , Síndrome do QT Longo/genética , Síndrome do QT Longo/metabolismo , Síndrome do QT Longo/fisiopatologia , Miócitos Cardíacos/metabolismo , Propofol/toxicidade , Medição de Risco , Fatores de Risco , Síndrome de Romano-Ward/genética , Síndrome de Romano-Ward/metabolismo , Síndrome de Romano-Ward/fisiopatologia , Fatores de Tempo
4.
eNeuro ; 5(4)2018.
Artigo em Inglês | MEDLINE | ID: mdl-30225347

RESUMO

Ca2+/calmodulin-dependent protein kinase IIα (CaMKIIα) is a key mediator of activity-dependent neuronal modifications and has been implicated in the molecular mechanisms of learning and memory. Indeed, several types of CaMKIIα knock-in (KI) and knock-out (KO) mice revealed impairments in hippocampal synaptic plasticity and behavioral learning. On the other hand, a similar role for CaMKIIα has been implicated in amygdala-dependent memory, but detailed analyses have not much been performed yet. To better understand its involvement in amygdala-dependent memory as compared to hippocampus-dependent memory, here we performed biochemical analyses and behavioral memory tests using the kinase-dead CaMKIIα (K42R)-KI mouse. In the Morris water maze tasks, homozygous mutants performed well in the visible platform trials, while they failed to form spatial memory in the hippocampus-dependent hidden platform trials. In fear conditioning, these mice were impaired but showed a certain level of amygdala-dependent cued fear memory, which lasted four weeks, while they showed virtually no hippocampus-dependent context discrimination. Neither stronger stimulation nor repetitive stimulation compensated for their memory deficits. The differential outcome of hippocampus- and amygdala-dependent memory in the mutant mouse was not due to differential expression of CaMKIIα between the hippocampus and the amygdala, because biochemical analyses revealed that both kinase activity and protein levels of CaMKII were indistinguishable between the two brain regions. These results indicate that kinase activity of CaMKIIα is indispensable for hippocampus-dependent memory, but not necessarily for amygdala-dependent memory. There may be a secondary, CaMKIIα activity-independent pathway, in addition to the CaMKIIα activity-dependent pathway, in the acquisition of amygdala-dependent memory.


Assuntos
Tonsila do Cerebelo/fisiologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/fisiologia , Condicionamento Clássico/fisiologia , Medo/fisiologia , Hipocampo/fisiologia , Aprendizagem em Labirinto/fisiologia , Memória Espacial/fisiologia , Animais , Comportamento Animal/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
5.
Basic Clin Neurosci ; 8(1): 37-42, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28446948

RESUMO

INTRODUCTION: Glabrous skin and hairy skin are innervated by different types of noxious fibers. However, the different nociceptive behaviors induced by formalin, a commonly used model of acute inflammatory pain, have not yet been systematically examined in the glabrous and hairy skin. METHODS: In this study, we compared nociceptive behaviors induced by formalin injections (2%, 4%, and 8%) into either glabrous skin (plantar surface) of the hind paw or hairy skin of the hind limb in adult rats. RESULTS: A typical biphasic nociceptive response was seen after formalin injection into the plantar surface of the hind paw. A brief interphase separates the first and second phases where nociceptive behaviors were barely spotted. However, following subcutaneous injection into the hairy skin nociceptive behaviors were only seen after 10 minutes of formalin injection, which correlates in time with the second phase of the formalin response. First phase nociceptive behaviors were never seen with hairy skin injection, even following multiple injections of formalin. CONCLUSION: These data suggest that nociceptive behaviors and spinal responses induced by formalin injections to glabrous and hairy skin areas are different, and that the first and second phases may be mediated through different noxious afferent fibers.

6.
Nat Commun ; 7: 11067, 2016 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-27063795

RESUMO

Myotonic dystrophy (DM) is caused by the expression of mutant RNAs containing expanded CUG repeats that sequester muscleblind-like (MBNL) proteins, leading to alternative splicing changes. Cardiac alterations, characterized by conduction delays and arrhythmia, are the second most common cause of death in DM. Using RNA sequencing, here we identify novel splicing alterations in DM heart samples, including a switch from adult exon 6B towards fetal exon 6A in the cardiac sodium channel, SCN5A. We find that MBNL1 regulates alternative splicing of SCN5A mRNA and that the splicing variant of SCN5A produced in DM presents a reduced excitability compared with the control adult isoform. Importantly, reproducing splicing alteration of Scn5a in mice is sufficient to promote heart arrhythmia and cardiac-conduction delay, two predominant features of myotonic dystrophy. In conclusion, misregulation of the alternative splicing of SCN5A may contribute to a subset of the cardiac dysfunctions observed in myotonic dystrophy.


Assuntos
Processamento Alternativo/genética , Arritmias Cardíacas/complicações , Arritmias Cardíacas/genética , Sistema de Condução Cardíaco/fisiopatologia , Distrofia Miotônica/complicações , Distrofia Miotônica/genética , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Adulto , Idoso , Animais , Sequência de Bases , Sítios de Ligação , Simulação por Computador , Fenômenos Eletrofisiológicos , Éxons/genética , Feminino , Células HEK293 , Sistema de Condução Cardíaco/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Motivos de Nucleotídeos/genética , Proteínas de Ligação a RNA/metabolismo , Canais de Sódio/metabolismo , Xenopus
7.
Cerebellum ; 15(2): 201-7, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25971904

RESUMO

The number of synaptic vesicles released during fast release plays a major role in determining the strength of postsynaptic response. However, it remains unresolved how the number of vesicles released in response to action potentials is controlled at a single synapse. Recent findings suggest that the Cav2.1 subtype (P/Q-type) of voltage-gated calcium channels is responsible for inducing presynaptic multivesicular release (MVR) at rat cerebellar glutamatergic synapses from granule cells to molecular layer interneurons. The topographical distance from Cav2.1 channels to exocytotic Ca(2+) sensors is a critical determinant of MVR. In physiological trains of presynaptic neurons, MVR significantly impacts the excitability of postsynaptic neurons, not only by increasing peak amplitude but also by prolonging decay time of the postsynaptic currents. Therefore, MVR contributes additional complexity to neural encoding and processing in the cerebellar cortex.


Assuntos
Potenciais de Ação/fisiologia , Canais de Cálcio Tipo N/fisiologia , Córtex Cerebelar/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Sinapses/fisiologia , Animais , Humanos , Transmissão Sináptica/fisiologia
8.
Neurosci Res ; 97: 26-35, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25887794

RESUMO

The cortico-basal ganglia-thalamic loop circuit is involved in variety of motor, association and limbic functions. The basal ganglia receive neural information from various areas of the cerebral cortex and transfer them back to the frontal and motor cortex via the ventral medial (VM), and the anterior-ventral lateral thalamic complex. The projection from the basal ganglia to the thalamus is GABAergic, and, therefore, the output from the basal ganglia cannot directly evoke excitation in the thalamic nuclei. The mechanism underlying the information transfer via the inhibitory projection remains unclear. To address this issue, we recorded electrophysiological properties of nigro-thalamic synapses from the VM neuron. We developed a nigro-thalamic slice preparation, in which the projection from the substantia nigra pars reticulata (SNr) to VM nucleus is stored, to enable the selective activation of the projection from the SNr. We characterized synaptic properties and membrane properties of the VM neuron, and developed a VM neuron model to simulate the impacts of SNr inputs on VM neuron activity. Neural simulation suggested that the inhibitory projection from SNr can control neural activity in two ways: a disinhibition from the spontaneous nigral inhibition and a ß-band synchronization evoked by combination of excitation and inhibition of SNr activity.


Assuntos
Neurônios/fisiologia , Parte Reticular da Substância Negra/fisiologia , Transmissão Sináptica , Núcleos Ventrais do Tálamo/fisiologia , Potenciais de Ação , Animais , Simulação por Computador , Potenciais Pós-Sinápticos Inibidores , Camundongos , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Vias Neurais/fisiologia , Parte Reticular da Substância Negra/citologia , Núcleos Ventrais do Tálamo/citologia
9.
Pflugers Arch ; 467(4): 737-52, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24947601

RESUMO

Cholinergically induced network activity is a useful analogue of theta rhythms involved in memory processing or epileptiform activity in the hippocampus, providing a powerful tool to elucidate the mechanisms of synchrony in neuronal networks. In absence epilepsy, although its association with cognitive impairments has been reported, the mechanisms underlying hippocampal synchrony remain poorly investigated. Here we simultaneously recorded electrical activities from 64 sites in hippocampal slices of CaV2.1 Ca(2+) channel mutant tottering (tg) mice, a well-established mouse model of spontaneous absence epilepsy, to analyze the spatiotemporal pattern of cholinergically induced hippocampal network activity. The cholinergic agonist carbachol induced oscillatory discharges originating from the CA3 region. In tg/tg mice, this hippocampal network activity was characterized by enhanced occupancy of discharges of relatively high frequency (6-10 Hz) compared to the wild type. Pharmacological analyses of slices, patch clamp electrophysiological characterization of isolated neurons, and altered patterns of hippocampal GABAA receptor subunit and Cl(-) transporter messenger RNA (mRNA) transcript levels revealed that this abnormality is attributable to a developmental retardation of GABAergic inhibition caused by immature intracellular Cl(-) regulation. These results suggest that the inherited CaV2.1 Ca(2+) channel mutation leads to developmental abnormalities in Cl(-) transporter expression and GABAA receptor compositions in hippocampal neurons and that compromised maturation of GABAergic inhibition contributes to the abnormal synchrony in the hippocampus of tg absence epileptic mice.


Assuntos
Região CA3 Hipocampal/metabolismo , Canais de Cálcio Tipo N/metabolismo , Epilepsia/genética , Neurônios GABAérgicos/metabolismo , Inibição Neural , Receptores de GABA-A/metabolismo , Potenciais de Ação , Animais , Região CA3 Hipocampal/citologia , Região CA3 Hipocampal/crescimento & desenvolvimento , Região CA3 Hipocampal/fisiopatologia , Canais de Cálcio Tipo N/genética , Células Cultivadas , Cloretos/metabolismo , Epilepsia/metabolismo , Epilepsia/fisiopatologia , Neurônios GABAérgicos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de GABA-A/genética , Ácido gama-Aminobutírico/metabolismo
10.
Nat Med ; 21(1): 19-26, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25485908

RESUMO

Epilepsy is one of the most common and intractable brain disorders. Mutations in the human gene LGI1, encoding a neuronal secreted protein, cause autosomal dominant lateral temporal lobe epilepsy (ADLTE). However, the pathogenic mechanisms of LGI1 mutations remain unclear. We classified 22 reported LGI1 missense mutations as either secretion defective or secretion competent, and we generated and analyzed two mouse models of ADLTE encoding mutant proteins representative of the two groups. The secretion-defective LGI1(E383A) protein was recognized by the ER quality-control machinery and prematurely degraded, whereas the secretable LGI1(S473L) protein abnormally dimerized and was selectively defective in binding to one of its receptors, ADAM22. Both mutations caused a loss of function, compromising intracellular trafficking or ligand activity of LGI1 and converging on reduced synaptic LGI1-ADAM22 interaction. A chemical corrector, 4-phenylbutyrate (4PBA), restored LGI1(E383A) folding and binding to ADAM22 and ameliorated the increased seizure susceptibility of the LGI1(E383A) model mice. This study establishes LGI1-related epilepsy as a conformational disease and suggests new therapeutic options for human epilepsy.


Assuntos
Proteínas ADAM/metabolismo , Epilepsia do Lobo Frontal/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas/genética , Convulsões/genética , Transtornos do Sono-Vigília/genética , Proteínas ADAM/química , Proteínas ADAM/genética , Animais , Modelos Animais de Doenças , Epilepsia do Lobo Frontal/patologia , Epilepsia do Lobo Frontal/terapia , Predisposição Genética para Doença , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Mutação , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Fenilbutiratos/administração & dosagem , Dobramento de Proteína/efeitos dos fármacos , Proteínas/metabolismo , Convulsões/patologia , Convulsões/terapia , Transtornos do Sono-Vigília/patologia , Transtornos do Sono-Vigília/terapia
11.
J Neurosci ; 34(4): 1258-70, 2014 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-24453317

RESUMO

Functional synapse elimination and strengthening are crucial developmental processes in the formation of precise neuronal circuits in the somatosensory system, but the underlying alterations in topographical organization are not yet fully understood. To address this issue, we generated transgenic mice in which afferent fibers originating from the whisker-related brain region, called the maxillary principal trigeminal nucleus (PrV2), were selectively visualized with genetically expressed fluorescent protein. We found that functional synapse elimination drove and established large-scale somatotopic refinement even after the thalamic barreloid architecture was formed. Before functional synapse elimination, the whisker sensory thalamus was innervated by afferent fibers not only from the PrV2, but also from the brainstem nuclei representing other body parts. Most notably, only afferent fibers from PrV2 onto a whisker sensory thalamic neuron selectively survived and were strengthened, whereas other afferent fibers were preferentially eliminated via their functional synapse elimination. This large-scale somatotopic refinement was at least partially dependent on somatosensory experience. These novel results uncovered a previously unrecognized role of developmental synapse elimination in the large-scale, instead of the fine-scale, somatotopic refinement even after the initial segregation of the barreloid map.


Assuntos
Neurogênese/fisiologia , Sinapses/fisiologia , Tálamo/crescimento & desenvolvimento , Tálamo/ultraestrutura , Animais , Potenciais Pós-Sinápticos Excitadores , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Técnicas de Patch-Clamp , Sinapses/ultraestrutura
12.
J Neurosci ; 34(4): 1462-74, 2014 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-24453334

RESUMO

The concomitant release of multiple numbers of synaptic vesicles [multivesicular release (MVR)] in response to a single presynaptic action potential enhances the flexibility of synaptic transmission. However, the molecular mechanisms underlying MVR at a single CNS synapse remain unclear. Here, we show that the Cav2.1 subtype (P/Q-type) of the voltage-gated calcium channel is specifically responsible for the induction of MVR. In the rat cerebellar cortex, paired-pulse activation of granule cell (GC) ascending fibers leads not only to a facilitation of the peak amplitude (PPFamp) but also to a prolongation of the decay time (PPPdecay) of the EPSCs recorded from molecular layer interneurons. PPFamp is elicited by a transient increase in the number of released vesicles. PPPdecay is highly dependent on MVR and is caused by dual mechanisms: (1) a delayed release and (2) an extrasynaptic spillover of the GC transmitter glutamate and subsequent pooling of the glutamate among active synapses. PPPdecay was specifically suppressed by the Cav2.1 channel blocker ω-agatoxin IVA, while PPFamp responded to Cav2.2/Cav2.3 (N-type/R-type) channel blockers. The membrane-permeable slow Ca(2+) chelator EGTA-AM profoundly reduced the decay time constant (τdecay) of the second EPSC; however, it only had a negligible impact on that of the first, thereby eliminating PPPdecay. These results suggest that the distance between presynaptic Cav2.1 channels and exocytotic Ca(2+) sensors is a key determinant of MVR. By transducing presynaptic action potential firings into unique Ca(2+) signals and vesicle release profiles, Cav2.1 channels contribute to the encoding and processing of neural information.


Assuntos
Canais de Cálcio Tipo N/metabolismo , Cerebelo/metabolismo , Exocitose/fisiologia , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo , Potenciais de Ação/fisiologia , Animais , Cálcio/metabolismo , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Masculino , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp , Ratos , Ratos Wistar
13.
Pain ; 155(3): 617-628, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24355412

RESUMO

α2-Adrenoceptors are widely distributed throughout the central nervous system (CNS) and the systemic administration of α2-agonists such as dexmedetomidine produces clinically useful, centrally mediated sedation and analgesia; however, these same actions also limit the utility of these agents (ie, unwanted sedative actions). Despite a wealth of data on cellular and synaptic actions of α2-agonists in vitro, it is not known which neuronal circuits are modulated in vivo to produce the analgesic effect. To address this issue, we made in vivo recordings of membrane currents and synaptic activities in superficial spinal dorsal horn neurons and examined their responses to systemic dexmedetomidine. We found that dexmedetomidine at doses that produce analgesia (<10 µg/kg) enhanced inhibitory postsynaptic transmission within the superficial dorsal horn without altering excitatory synaptic transmission or evoking direct postsynaptic membrane currents. In contrast, higher doses of dexmedetomidine (>10 µg/kg) induced outward currents by a direct postsynaptic action. The dexmedetomidine-mediated inhibitory postsynaptic current facilitation was not mimicked by spinal application of dexmedetomidine and was absent in spinalized rats, suggesting that it acts at a supraspinal site. Furthermore, it was inhibited by spinal application of the α1-antagonist prazosin. In the brainstem, low doses of systemic dexmedetomidine produced an excitation of locus coeruleus neurons. These results suggest that systemic α2-adrenoceptor stimulation may facilitate inhibitory synaptic responses in the superficial dorsal horn to produce analgesia mediated by activation of the pontospinal noradrenergic inhibitory system. This novel mechanism may provide new targets for intervention, perhaps allowing analgesic actions to be dissociated from excessive sedation.


Assuntos
Neurônios Adrenérgicos/efeitos dos fármacos , Analgesia/métodos , Dexmedetomidina/administração & dosagem , Inibição Neural/efeitos dos fármacos , Células do Corno Posterior/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Neurônios Adrenérgicos/fisiologia , Agonistas de Receptores Adrenérgicos alfa 2/administração & dosagem , Analgésicos não Narcóticos/administração & dosagem , Animais , Masculino , Inibição Neural/fisiologia , Técnicas de Patch-Clamp/métodos , Células do Corno Posterior/fisiologia , Ratos , Ratos Sprague-Dawley , Transmissão Sináptica/fisiologia
14.
J Physiol ; 591(13): 3433-49, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23652595

RESUMO

Dystonia is characterized by excessive involuntary and prolonged simultaneous contractions of both agonist and antagonist muscles. Although the basal ganglia have long been proposed as the primary region, recent studies indicated that the cerebellum also plays a key role in the expression of dystonia. One hereditary form of dystonia, rapid-onset dystonia with parkinsonism (RDP), is caused by loss of function mutations of the gene for the Na pump α3 subunit (ATP1A3). Little information is available on the affected brain regions and mechanism for dystonia by the mutations in RDP. The Na pump is composed of α and ß subunits and maintains ionic gradients of Na(+) and K(+) across the cell membrane. The gradients are utilized for neurotransmitter reuptake and their alteration modulates neural excitability. To provide insight into the molecular aetiology of RDP, we generated and analysed knockout heterozygous mice (Atp1a3(+/-)). Atp1a3(+/-) showed increased symptoms of dystonia that is induced by kainate injection into the cerebellar vermis. Atp1a3 mRNA was highly expressed in Purkinje cells and molecular-layer interneurons, and its product was concentrated at Purkinje cell soma, the site of abundant vesicular γ-aminobutyric acid transporter (VGAT) signal, suggesting the presynaptic localization of the α3 subunit in the inhibitory synapse. Electrophysiological studies showed that the inhibitory neurotransmission at molecular-layer interneuron-Purkinje cell synapses was enhanced in Atp1a3(+/-) cerebellar cortex, and that the enhancement originated via a presynaptic mechanism. Our results shed light on the role of Atp1a3 in the inhibitory synapse, and potential involvement of inhibitory synaptic dysfunction for the pathophysiology of dystonia.


Assuntos
Córtex Cerebelar/fisiologia , Distonia/fisiopatologia , ATPase Trocadora de Sódio-Potássio/fisiologia , Animais , Técnicas In Vitro , Interneurônios/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora , Neurônios/fisiologia , Subunidades Proteicas/fisiologia , Desempenho Psicomotor , Transmissão Sináptica
15.
Brain Res ; 1507: 1-10, 2013 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-23419897

RESUMO

Extracellular signal-regulated kinase 1/2 (ERK1/2) that belongs to a subfamily of mitogen-activated protein kinases (MAPKs) plays diverse roles in the central nervous system. Activation of ERK1/2 has been observed in various types of neuronal excitation, including seizure activity in vivo and in vitro, as well as in NMDA-receptor (NMDA-R)-dependent long-term potentiation in the hippocampus. On the other hand, recent studies in cultured neurons have shown that NMDA-R stimulation could result in either ERK1/2 activation or non-activation, depending on the pharmacological manipulations. To assess NMDA-R-dependent regulation of ERK1/2 activity in vivo, here we examined the effect of NMDA-R-induced seizure activity on ERK1/2 activation by using rat cortical slice preparations. NMDA-R-dependent seizure activity introduced by Mg2+ -free condition did not cause ERK1/2 activation. On the other hand, when picrotoxin was added to concurrently suppress GABAA-receptor-mediated inhibition, profound ERK1/2 activation occurred, which was accompanied by strong phospho-ERK1/2-staining in the superficial and deep cortical layer neurons. In this case, prolonged membrane depolarization and enhanced burst action potential firings, both of which were much greater than those in Mg2+ -free condition alone, were observed. Differential ERK1/2 activation was supported by the concurrent selective increase in phosphorylation of a substrate protein, phospho-site 4/5 of synapsin I. These results indicate that NMDA-R activation through a release from Mg2+ -blockade, which accompanies enhancement of both excitatory and inhibitory synaptic transmission, was not enough, but concurrent suppression of GABAergic inhibition, which leads to a selective increase in excitatory synaptic transmission, was necessary for robust ERK1/2 activation to occur within the cortical network.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células Piramidais/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Convulsões/enzimologia , Córtex Somatossensorial/fisiologia , Animais , Antagonistas GABAérgicos/farmacologia , Técnicas In Vitro , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Magnésio/farmacologia , Masculino , Picrotoxina/farmacologia , Células Piramidais/enzimologia , Células Piramidais/metabolismo , Ratos , Ratos Wistar , Convulsões/induzido quimicamente , Convulsões/metabolismo , Convulsões/fisiopatologia , Córtex Somatossensorial/efeitos dos fármacos
16.
Mol Neurodegener ; 7: 50, 2012 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-23034178

RESUMO

BACKGROUND: One of the best-characterized causative factors of Alzheimer's disease (AD) is the generation of amyloid-ß peptide (Aß). AD subjects are at high risk of epileptic seizures accompanied by aberrant neuronal excitability, which in itself enhances Aß generation. However, the molecular linkage between epileptic seizures and Aß generation in AD remains unclear. RESULTS: X11 and X11-like (X11L) gene knockout mice suffered from epileptic seizures, along with a malfunction of hyperpolarization-activated cyclic nucleotide gated (HCN) channels. Genetic ablation of HCN1 in mice and HCN1 channel blockage in cultured Neuro2a (N2a) cells enhanced Aß generation. Interestingly, HCN1 levels dramatically decreased in the temporal lobe of cynomolgus monkeys (Macaca fascicularis) during aging and were significantly diminished in the temporal lobe of sporadic AD patients. CONCLUSION: Because HCN1 associates with amyloid-ß precursor protein (APP) and X11/X11L in the brain, genetic deficiency of X11/X11L may induce aberrant HCN1 distribution along with epilepsy. Moreover, the reduction in HCN1 levels in aged primates may contribute to augmented Aß generation. Taken together, HCN1 is proposed to play an important role in the molecular linkage between epileptic seizures and Aß generation, and in the aggravation of sporadic AD.


Assuntos
Doença de Alzheimer/genética , Peptídeos beta-Amiloides/biossíntese , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Epilepsia/genética , Canais de Potássio/genética , Convulsões/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/metabolismo , Doença de Alzheimer/metabolismo , Animais , Encéfalo/metabolismo , Eletroencefalografia , Epilepsia/metabolismo , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Immunoblotting , Imuno-Histoquímica , Imunoprecipitação , Macaca fascicularis , Masculino , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Técnicas de Patch-Clamp , Convulsões/metabolismo
17.
J Signal Transduct ; 2012: 619747, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22934165

RESUMO

Hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels were first reported in heart cells and are recently known to be involved in a variety of neural functions in healthy and diseased brains. HCN channels generate inward currents when the membrane potential is hyperpolarized. Voltage dependence of HCN channels is regulated by intracellular signaling cascades, which contain cyclic AMP, PIP(2), and TRIP8b. In addition, voltage-gated potassium channels have a strong influence on HCN channel activity. Because of these funny features, HCN channel currents, previously called funny currents, can have a wide range of functions that are determined by a delicate balance of modulatory factors. These multifaceted features also make it difficult to predict and elucidate the functional role of HCN channels in actual neurons. In this paper, we focus on the impacts of HCN channels on neural activity. The functions of HCN channels reported previously will be summarized, and their mechanisms will be explained by using numerical simulation of simplified model neurons.

18.
J Physiol ; 590(22): 5653-75, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22930264

RESUMO

A simple form of presynaptic plasticity, paired-pulse facilitation (PPF), has been explained as a transient increase in the probability of vesicular release. Using the whole-cell patch-clamp technique to record synaptic activity in rat cerebellar slices, we found different forms of presynaptically originated short-term plasticity during glutamatergic excitatory neurotransmission from granule cells (GCs) to molecular-layer interneurones (INs). Paired-pulse activation of GC axons at short intervals (30-100 ms) elicited not only a facilitation in the peak amplitude (PPF(amp)), but also a prolongation in the decay-time constant (PPP(decay)) of the EPSCs recorded from INs. The results of pharmacological tests and kinetics analyses suggest that the mechanisms underlying the respective types of short-term plasticity were different. PPF(amp) was elicited by a transient increase in the number of released vesicles. On the other hand, PPP(decay) was caused not only by delayed release as has been reported but also by extrasynaptic spillover of the GC transmitter and the subsequent intersynaptic pooling. Both PPF(amp) and PPP(decay) closely rely on repetitive-activation-induced multivesicular release. Using a dynamic clamp technique, we further examined the physiological significance of different presynaptic plasticity, and found that PPF(amp) and PPP(decay) can differentially encode and process neuronal information by influencing the total synaptic charge transferred to postsynaptic INs to reflect activation frequency of the presynaptic GCs.


Assuntos
Ácido Glutâmico/metabolismo , Interneurônios/fisiologia , Sinapses/fisiologia , Vesículas Sinápticas/fisiologia , Animais , Córtex Cerebelar/citologia , Córtex Cerebelar/fisiologia , Potenciais Pós-Sinápticos Excitadores , Exocitose , Antagonistas GABAérgicos/farmacologia , Interneurônios/citologia , Plasticidade Neuronal , Ratos , Ratos Wistar , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
19.
J Neurosci ; 32(20): 6917-30, 2012 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-22593060

RESUMO

The remodeling of neural circuitry and changes in synaptic efficacy after peripheral sensory nerve injury are considered the basis for functional reorganization in the brain, including changes in receptive fields. However, when or how the remodeling occurs is largely unknown. Here we show the rapid rewiring of afferent fibers in the mature ventral posteromedial thalamic nucleus of mice after transection of the peripheral whisker sensory nerve, using the whole-cell voltage-clamp technique. Transection induced the recruitment of afferent fibers to a thalamic relay neuron within 5-6 d of injury. The rewiring was pathway specific, but not sensory experience dependent or peripheral nerve activity dependent. The newly recruited fibers mediated small EPSCs, and postsynaptic GluA2-containing AMPA receptors were selectively upregulated at the new synapses. This rapid and pathway-specific remodeling of thalamic circuitry may be an initial step in the massive axonal reorganization at supraspinal levels, which occurs months or years after peripheral sensory nerve injury.


Assuntos
Vias Aferentes/fisiopatologia , Regeneração Nervosa/fisiologia , Traumatismos dos Nervos Periféricos/fisiopatologia , Receptores de AMPA/biossíntese , Núcleos Ventrais do Tálamo/fisiopatologia , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Neurônios/fisiologia , Fatores de Tempo , Regulação para Cima , Núcleos Ventrais do Tálamo/citologia , Vibrissas/inervação , Vibrissas/fisiologia
20.
J Physiol ; 590(10): 2225-31, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22371480

RESUMO

Locus coeruleus (LC) neurones extend noradrenergic projections throughout the neuroaxis and are involved in homeostatic functions such as pain modulation, arousal and cardio-respiratory control. To address the cellular mechanisms underlying pain modulation we have developed a patch-clamp recording technique from LC neurones in anaesthetized rats. These recordings showed LC discharge in vivo to be driven by both spontaneous membrane potential oscillations and CNQX-sensitive EPSCs opposed by bicuculine-sensitive IPSCs. Hindlimb pinch evoked a biphasic action potential response underpinned by a slow monophasic excitatory current. This approach allows detailed characterisation of the synaptic and integrative mechanisms of LC responses to naturalistic stimulation.


Assuntos
Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais Pós-Sinápticos Inibidores/fisiologia , Locus Cerúleo/fisiologia , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Animais , Bicuculina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Receptores de GABA-A/farmacologia , Locus Cerúleo/efeitos dos fármacos , Masculino , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Dor/fisiopatologia , Técnicas de Patch-Clamp/métodos , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...