Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 156(9): 094703, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35259897

RESUMO

Many essential processes occur at soft interfaces, from chemical reactions on aqueous aerosols in the atmosphere to biochemical recognition and binding at the surface of cell membranes. The spatial arrangement of molecules specifically at these interfaces is crucial for many of such processes. The accurate determination of the interfacial molecular orientation has been challenging due to the low number of molecules at interfaces and the ambiguity of their orientational distribution. Here, we combine phase- and polarization-resolved sum-frequency generation (SFG) spectroscopy to obtain the molecular orientation at the interface. We extend an exponentially decaying orientational distribution to multiple dimensions, which, in conjunction with multiple SFG datasets obtained from the different vibrational modes, allows us to determine the molecular orientation. We apply this new approach to formic acid molecules at the air-water interface. The inferred orientation of formic acid agrees very well with ab initio molecular dynamics data. The phase-resolved SFG multimode analysis scheme using the multidimensional orientational distribution thus provides a universal approach for obtaining the interfacial molecular orientation.

2.
Phys Chem Chem Phys ; 23(19): 11355-11365, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-33972970

RESUMO

Trimethylamine N-oxide (TMAO) is a well known osmolyte in nature, which is used by deep sea fish to stabilize proteins against High Hydrostatic Pressure (HHP). We present a combined ab initio molecular dynamics, force field molecular dynamics, and THz absorption study of TMAO in water up to 12 kbar to decipher its solvation properties upon extreme compression. On the hydrophilic oxygen side of TMAO, AIMD simulations at 1 bar and 10 kbar predict a change of the coordination number from a dominating TMAO·(H2O)3 complex at ambient conditions towards an increased population of a TMAO·(H2O)4 complex at HHP conditions. This increase of the TMAO-oxygen coordination number goes in line with a weakening of the local hydrogen bond network, spectroscopic shifts and intensity changes of the corresponding intermolecular THz bands. Using a pressure-dependent HHP force field, FFMD simulations predict a significant increase of hydrophobic hydration from 1 bar up to 4-5 kbar, which levels off at higher pressures up to 10 kbar. THz spectroscopic data reveal two important pressure regimes with spectroscopic inflection points of the dominant intermolecular modes: The first regime (1.5-2 kbar) is barely recognizable in the simulation data. However, it relates well with the observation that the apparent molar volume of solvated TMAO is nearly constant in the biologically relevant pressure range up to 1 kbar as found in the deepest habitats on Earth in the ocean. The second inflection point around 4-5 kbar is related to the amount of hydrophobic hydration as predicted by the FFMD simulations. In particular, the blueshift of the intramolecular CNC bending mode of TMAO at about 390 cm-1 is the spectroscopic signature of increasingly pronounced pressure-induced changes in the solvation shell of TMAO. Thus, the CNC bend can serve as local pressure sensor in the multi-kbar pressure regime.

3.
Phys Rev Lett ; 125(8): 086001, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32909792

RESUMO

Compression of liquid water up to multi-kbar pressures is known to perturb dramatically its local structure required for charge defects to migrate as topological defects in the hydrogen-bonded network. Our ab initio simulations show that the migration of excess protons is not much affected at 10 kbar, whereas that of proton holes is significantly reduced. Non-Markovian analyses show that this is not due to modifying the free energy barriers of both charge transfer and migration. It is rather pressure-induced modifications of the population of activated states, depending on interstitial water, which rules charge migration at extreme compression.

4.
Nat Commun ; 11(1): 1611, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32235854

RESUMO

Despite the widespread use of aqueous electrolytes as conductors, the molecular mechanism of ionic conductivity at moderate to high electrolyte concentrations remains largely unresolved. Using a combination of dielectric spectroscopy and molecular dynamics simulations, we show that the absorption of electrolytes at ~0.3 THz sensitively reports on the local environment of ions. The magnitude of these high-frequency ionic motions scales linearly with conductivity for a wide range of ions and concentrations. This scaling is rationalized within a harmonic oscillator model based on the potential of mean force extracted from simulations. Our results thus suggest that long-ranged ionic transport is intimately related to the local energy landscape and to the friction for short-ranged ion dynamics: a high macroscopic electrolyte conductivity is thereby shown to be related to large-amplitude motions at a molecular scale.

5.
Chem Rev ; 120(8): 3633-3667, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32141737

RESUMO

From a glass of water to glaciers in Antarctica, water-air and ice-air interfaces are abundant on Earth. Molecular-level structure and dynamics at these interfaces are key for understanding many chemical/physical/atmospheric processes including the slipperiness of ice surfaces, the surface tension of water, and evaporation/sublimation of water. Sum-frequency generation (SFG) spectroscopy is a powerful tool to probe the molecular-level structure of these interfaces because SFG can specifically probe the topmost interfacial water molecules separately from the bulk and is sensitive to molecular conformation. Nevertheless, experimental SFG has several limitations. For example, SFG cannot provide information on the depth of the interface and how the orientation of the molecules varies with distance from the surface. By combining the SFG spectroscopy with simulation techniques, one can directly compare the experimental data with the simulated SFG spectra, allowing us to unveil the molecular-level structure of water-air and ice-air interfaces. Here, we present an overview of the different simulation protocols available for SFG spectra calculations. We systematically compare the SFG spectra computed with different approaches, revealing the advantages and disadvantages of the different methods. Furthermore, we account for the findings through combined SFG experiments and simulations and provide future challenges for SFG experiments and simulations at different aqueous interfaces.

6.
J Am Chem Soc ; 142(2): 945-952, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31867949

RESUMO

Understanding the interfacial molecular structure of acidic aqueous solutions is important in the context of, e.g., atmospheric chemistry, biophysics, and electrochemistry. The hydration of the interfacial proton is necessarily different from that in the bulk, given the lower effective density of water at the interface, but has not yet been elucidated. Here, using surface-specific vibrational spectroscopy, we probe the response of interfacial protons at the water-air interface and reveal the interfacial proton continuum. Combined with spectral calculations based on ab initio molecular dynamics simulations, the proton at the water-air interface is shown to be well-hydrated, despite the limited availability of hydration water, with both Eigen and Zundel structures coexisting at the interface. Notwithstanding the interfacial hydrated proton exhibiting bulk-like structures, a substantial interfacial stabilization by -1.3 ± 0.2 kcal/mol is observed experimentally, in good agreement with our free energy calculations. The surface propensity of the proton can be attributed to the interaction between the hydrated proton and its counterion.

7.
Biophys Chem ; 257: 106258, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31881504

RESUMO

Recent methodological progress in quantum-chemical calculations using the "embedded cluster reference interaction site model" (EC-RISM) integral equation theory is reviewed in the context of applying it as a solvation model for calculating pressure-dependent thermodynamic and spectroscopic properties of molecules immersed in water. The methodology is based on self-consistent calculations of electronic and solvation structure around dissolved molecules where pressure enters the equations via an appropriately chosen solvent response function and the pure solvent density. Besides specification of a dispersion-repulsion force field for solute-solvent interactions, the EC-RISM approach derives the electrostatic interaction contributions directly from the wave function. We further develop and apply the method to a variety of benchmark cases for which computational or experimental reference data are either available in the literature or are generated specifically for this purpose in this work. Starting with an enhancement to predict hydration free energies at non-ambient pressures, which is the basis for pressure-dependent molecular population estimation, we demonstrate the performance on the calculation of the autoionization constant of water. Spectroscopic problems are addressed by studying the biologically relevant small osmolyte TMAO (trimethylamine N-oxide). Pressure-dependent NMR shifts are predicted and compared to experiments taking into account proper computational referencing methods that extend earlier work. The experimentally observed IR blue-shifts of certain vibrational bands of TMAO as well as of the cyanide anion are reproduced by novel methodology that allows for weighing equilibrium and non-equilibrium solvent relaxation effects. Taken together, the model systems investigated allow for an assessment of the reliability of the EC-RISM approach for studying pressure-dependent biophysical processes.


Assuntos
Modelos Químicos , Espectroscopia de Ressonância Magnética , Metilaminas/síntese química , Metilaminas/química , Simulação de Dinâmica Molecular , Pressão , Teoria Quântica
9.
Biophys Chem ; 254: 106260, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31522071

RESUMO

Molecular simulations based on classical force fields are a powerful method for shedding light on the complex behavior of biomolecules in solution. When cosolutes are present in addition to water and biomolecules, subtle balances of weak intermolecular forces have to be accounted for. This imposes high demands on the quality of the underlying force fields, and therefore force field development for small cosolutes is still an active field. Here, we present the development of a new urea force field from studies of urea solutions at ambient and elevated hydrostatic pressures based on a combination of experimental and theoretical approaches. Experimental densities and solvation shell properties from ab initio molecular dynamics simulations at ambient conditions served as the target properties for the force field optimization. Since urea is present in many marine life forms, elevated hydrostatic pressure was rigorously addressed: densities at high pressure were measured by vibrating tube densitometry up to 500 bar and by X-ray absorption up to 5 kbar. Densities were determined by the perturbed-chain statistical associating fluid theory equation of state. Solvation properties were determined by embedded cluster integral equation theory and ab initio molecular dynamics. Our new force field is able to capture the properties of urea solutions at high pressures without further high-pressure adaption, unlike trimethylamine-N-oxide, for which a high-pressure adaption is necessary.


Assuntos
Simulação de Dinâmica Molecular , Ureia/química , Pressão , Soluções/química , Termodinâmica , Água/química
10.
J Phys Chem Lett ; 10(17): 4914-4919, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31393136

RESUMO

Density functional theory-based molecular dynamics simulations are increasingly being used for simulating aqueous interfaces. Nonetheless, the choice of the appropriate density functional, critically affecting the outcome of the simulation, has remained arbitrary. Here, we assess the performance of various exchange-correlation (XC) functionals, based on the metrics relevant to sum-frequency generation spectroscopy. The structure and dynamics of water at the water-air interface are governed by heterogeneous intermolecular interactions, thereby providing a critical benchmark for XC functionals. We find that the XC functionals constrained by exact functional conditions (revPBE and revPBE0) with the dispersion correction show excellent performance. The poor performance of the empirically optimized density functional (M06-L) indicates the importance of satisfying the exact functional condition. Understanding the performance of different XC functionals can aid in resolving the controversial interpretation of the interfacial water structure and direct the design of novel, improved XC functionals better suited to describing the heterogeneous interactions in condensed phases.

11.
J Phys Chem B ; 123(36): 7748-7753, 2019 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-31419128

RESUMO

High-precision THz (30 to 360 cm-1) spectra of bulk liquid water are presented from ambient conditions up to hydrostatic pressures of 10 kbar. In concert with ab initio simulations, this allows us to characterize the molecular-level changes of the H-bond network under solvent stress conditions. Both the experimental and theoretical THz spectra reveal a blue shift in the intermolecular translational mode at 180 cm-1 by 40 cm-1 at 10 kbar and a blue shift together with an intensity increase in the relaxation mode. These changes can be traced back to a pressure-induced increase of the population of so-called short H-bond double donor configurations at the expense of those with longer such intermolecular bonds. Distinct electronic polarization effects are critical to capture the characteristic intensity changes of the THz line shape function. These advances in high-pressure THz spectroscopy open the door to investigate the pressure response of solvation shells and solute-solvent couplings.

12.
J Chem Theory Comput ; 15(6): 3836-3843, 2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-31074989

RESUMO

van der Waals (vdW) correction schemes have been recognized to be essential for an accurate description of liquid water in first-principles molecular dynamics simulation. The description of the structure and dynamics of water is governed by the type of the vdW corrections. So far, two vdW correction schemes have been often used: empirical vdW corrections and nonlocal vdW corrections. In this paper, we assess the influence of the empirical vs nonlocal vdW correction schemes on the structure and dynamics of water at the water-air interface. Since the structure of water at the water-air interface is established by a delicate balance of hydrogen bond formation and breaking, the simulation at the water-air interface provides a unique platform to testify as to the heterogeneous interaction of water. We used the metrics [ Ohto et al. J. Chem. Theory Comput. , 2019 , 15 , 595 - 602 ] which are directly connected with the sum-frequency generation spectroscopic measurement. We find that the overall performance of nonlocal vdW methods is either similar or worse compared to the empirical vdW methods. We also investigated the performance of the optB88-DRSLL functional, which showed slightly less accuracy than the revPBE-D3 method. We conclude that the revPBE-D3 method shows the best performance for describing the interfacial water.

13.
J Chem Phys ; 150(8): 084502, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30823759

RESUMO

The radial distribution functions of liquid water are known to change significantly their shape upon hydrostatic compression from ambient conditions deep into the kbar pressure regime. It has been shown that despite their eye-catching changes, the fundamental locally tetrahedral fourfold H-bonding pattern that characterizes ambient water is preserved up to about 10 kbar (1 GPa), which is the stability limit of liquid water at 300 K. The observed increase in coordination number comes from pushing water molecules into the first coordination sphere without establishing an H-bond, resulting in roughly two such additional interstitial molecules at 10 kbar. THz spectroscopy has been firmly established as a powerful experimental technique to analyze H-bonding in aqueous solutions given that it directly probes the far-infrared lineshape and thus the prominent H-bond network mode around 180 cm-1. We, therefore, set out to assess pressure effects on the THz response of liquid water at 10 kbar in comparison to the 1 bar (0.1 MPa) reference, both at 300 K, with the aim to trace back the related lineshape changes to the structural level. To this end, we employ the instantaneous normal mode approximation to rigorously separate the H-bonding peak from the large background arising from the pronounced librational tail. By exactly decomposing the total molecular dynamics into hindered translations, hindered rotations, and intramolecular vibrations, we find that the H-bonding peak arises from translation-translation and translation-rotation correlations, which are successively decomposed down to the level of distinct local H-bond environments. Our utmost detailed analysis based on molecular pair classifications unveils that H-bonded double-donor water pairs contribute most to the THz response around 180 cm-1, whereas interstitial waters are negligible. Moreover, short double-donor H-bonds have their peak maximum significantly shifted toward higher frequencies with respect to such long H-bonds. In conjunction with an increasing relative population of these short H-bonds versus the long ones (while the population of other water pair classes is essentially pressure insensitive), this explains not only the blue-shift of the H-bonding peak by about 20-30 cm-1 in total from 1 bar to 10 kbar but also the filling of the shallow local minimum of the THz lineshape located in between the network peak and the red-wing of the librational band at 1 bar. Based on the changing populations as a function of pressure, we are also able to roughly estimate the pressure-dependence of the H-bond network mode and find that its pressure response and thus the blue-shifting are most pronounced at low kbar pressures.

14.
J Chem Theory Comput ; 15(1): 595-602, 2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30468702

RESUMO

First-principles molecular dynamics simulations within the density functional theory framework have been used to predict the surface structure of water at various aqueous interfaces, but there is no clear consensus on the choice of appropriate simulation parameters, such as exchange-correlation functions and van der Waals corrections yet. Here, we report the systematic survey for the structure and dynamics of water at the water-air interface simulated with various combinations of the exchange-correlation functionals within the generalized gradient approximation and empirical dispersion corrections. Particularly, we focus on the structure and dynamics of the free O-D group of D2O, as well as the surface tension of water. Through the comparison of these quantities with the experimental and accurate force field calculations, we conclude that revPBE with van der Waals correction shows significantly better results for simulating various air-water interfacial properties than BLYP and PBE functionals.

15.
Phys Chem Chem Phys ; 20(9): 6146-6158, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29457173

RESUMO

Solvation of trimethylamine-N-oxide (TMAO) by water is of great fundamental interest because this small molecule has both strongly hydrophilic and large hydrophobic groups at its opposite ends and, furthermore, stabilizes proteins against temperature and pressure denaturation. Since hydrophilic and hydrophobic groups affect the structural dynamics of the respective solvation water molecules in vastly different ways, we dissect their distinct influences on the THz spectrum of TMAO(aq) by using ab initio molecular dynamics simulations. In particular, we demonstrate that exclusively electronic polarization and charge transfer effects, being absent in the usual fixed-charge biomolecular force fields, are responsible for the significant enhancement of the effective molecular dipole moment of hydrophilic solvation water. This, in turn, leads to pronounced solute-solvent couplings and thus to specific THz modes that involve well-defined H-bond bending and stretching motion being characteristic to hydrophilic solvation. The THz response of individual H-bonded pairs of water molecules involving hydrophobic solvation water, in stark contrast, is nearly indistinguishable from such pairs in bulk water. Transcending the specific case, THz spectroscopy is suggested to be an ideal experimental approach to unravel the controversial piezolytic properties of TMAO including its counteracting effect on pressure-induced denaturation of proteins.

16.
Phys Rev Lett ; 121(24): 246101, 2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30608741

RESUMO

The orientational distribution of free O-H (O-D) groups at the H_{2}O- (D_{2}O-)air interface is investigated using combined molecular dynamics (MD) simulations and sum-frequency generation (SFG) experiments. The average angle of the free O-H groups, relative to the surface normal, is found to be ∼63°, substantially larger than previous estimates of 30°-40°. This discrepancy can be traced to erroneously assumed Gaussian or stepwise orientational distributions of free O-H groups. Instead, the MD simulation and SFG measurement reveal a broad and exponentially decaying orientational distribution. The broad orientational distribution indicates the presence of the free O-H group pointing down to the bulk. We ascribe the origin of such free O-H groups to the presence of capillary waves on the water surface.

17.
Angew Chem Int Ed Engl ; 55(33): 9534-8, 2016 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-27351995

RESUMO

Biophysics under extreme conditions is the fundamental platform for scrutinizing life in unusual habitats, such as those in the deep sea or continental subsurfaces, but also for putative extraterrestrial organisms. Therefore, an important thermodynamic variable to explore is pressure. It is shown that the combination of infrared spectroscopy with simulation is an exquisite approach for unraveling the intricate pressure response of the solvation pattern of TMAO in water, which is expected to be transferable to biomolecules in their native solvent. Pressure-enhanced hydrogen bonding was found for TMAO in water. TMAO is a molecule known to stabilize proteins against pressure-induced denaturation in deep-sea organisms.

18.
J Chem Phys ; 144(14): 144104, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-27083705

RESUMO

Accurate force fields are one of the major pillars on which successful molecular dynamics simulations of complex biomolecular processes rest. They have been optimized for ambient conditions, whereas high-pressure simulations become increasingly important in pressure perturbation studies, using pressure as an independent thermodynamic variable. Here, we explore the design of non-polarizable force fields tailored to work well in the realm of kilobar pressures--while avoiding complete reparameterization. Our key is to first compute the pressure-induced electronic and structural response of a solute by combining an integral equation approach to include pressure effects on solvent structure with a quantum-chemical treatment of the solute within the embedded cluster reference interaction site model (EC-RISM) framework. Next, the solute's response to compression is taken into account by introducing pressure-dependence into selected parameters of a well-established force field. In our proof-of-principle study, the full machinery is applied to N,N,N-trimethylamine-N-oxide (TMAO) in water being a potent osmolyte that counteracts pressure denaturation. EC-RISM theory is shown to describe well the charge redistribution upon compression of TMAO(aq) to 10 kbar, which is then embodied in force field molecular dynamics by pressure-dependent partial charges. The performance of the high pressure force field is assessed by comparing to experimental and ab initio molecular dynamics data. Beyond its broad usefulness for designing non-polarizable force fields for extreme thermodynamic conditions, a good description of the pressure-response of solutions is highly recommended when constructing and validating polarizable force fields.


Assuntos
Metilaminas/química , Simulação de Dinâmica Molecular , Pressão , Soluções , Água/química
19.
Phys Chem Chem Phys ; 17(37): 24224-37, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26325021

RESUMO

Trimethylamine N-oxide (TMAO) is a protecting osmolyte that stabilizes proteins against both temperature and pressure denaturation. Yet, even the solvation of TMAO itself is not well understood beyond ambient conditions. Here, using ab initio molecular dynamics, we analyze how its solvation structure changes upon compressing its ≈0.5 M aqueous solution from 1 bar to 10 kbar. The neat solvent, liquid water compressed to 10 kbar, is analyzed in detail to provide a meaningful gauge for the pressure-induced solvation changes of the solute. Pure water is shown to prefer to keep four H-bonded water molecules in a locally tetrahedral arrangement up to 10 kbar. The eye-catching shape changes of its oxygen-oxygen radial distribution function, where apparently the entire second peak is shifted into the first one, are traced back to about two more water molecules which are squeezed into the tetrahedral voids that are formed in the first shell by the H-bonded water molecules. These additional molecules increase the coordination number of pure water at 10 kbar significantly, but they are definitely not H-bonded to the central water molecule; rather they are its topological second to fourth H-bonded neighbors. The pressure response of TMAO(aq) is distinctly different, although its radial distribution functions do not change much. Under ambient conditions, the negatively charged oxygen site of the solute, which is strongly hydrophilic, predominantly accepts three H-bonds, whereas a roughly equal population of threefold and square-planar fourfold H-bonding is observed at 10 kbar. Moreover, only a negligible contribution of non-H-bonded water molecules is found in the first-shell region of TMAO even at 10 kbar, in contrast to the pressure response of water itself. In the hydrophobic region of TMAO, the solvating water molecules are found to straddle the three methyl groups at ambient pressure, which remains virtually unchanged upon compressing the solution to 10 kbar. Here, the pressure response is an increase from about 17 to 21 water molecules that solvate the methyl groups despite a sizable radial compression of the hydrophobic solvation shell.


Assuntos
Metilaminas/química , Água/química , Ligação de Hidrogênio , Pressão Hidrostática , Estrutura Molecular , Pressão Osmótica , Teoria Quântica , Solubilidade , Soluções
20.
J Phys Chem B ; 119(34): 11068-78, 2015 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-26042611

RESUMO

The vibrational energy relaxation and transfer processes of the OH stretching and HOH bending vibrations in liquid water are investigated via the theoretical calculation of the pump-probe spectra obtained from nonequilibrium molecular dynamics simulations with the TTM3-F interaction potential. The excitation of the OH stretch induces an instantaneous response of the high frequency librational motions in the 600-1000 cm(-1) range. In addition, the excess energy of the OH stretch of a water molecule quickly transfers to the OH stretches of molecules in its first hydration shell with a time constant of ∼50 fs, followed by relaxation to the HOH bends of the surrounding molecules with a time constant of 230 fs. The excitation of the HOH bend also results in the ultrafast excitation of the high frequency librational motions. The energy of the excited HOH bend of a water molecule decays, with a time constant of 200 fs, mainly to the relaxation of the HOH bends of its surrounding molecules. The energies of the HOH bends were found to transfer quickly to the intermolecular motions via the coupling with the high frequency librational motions. The excess energy of the OH stretch or the HOH bend relaxes to the high frequency intermolecular librational motions and eventually to the hot ground state with a time scale of ∼1 ps via the coupling with the librational and translational motions. The energy relaxation and transfer processes were found to depend on the local hydrogen bonding network; the relaxations of the excess energy of the OH stretch and the HOH bend of four- and five-coordinated molecules are faster than those of a three-coordinated molecule due to the delocalization of the vibrational motions of the former (four- and five-coordinated molecules) compared to those of the later (three-coordinated molecules). The present results highlight the importance of the high frequency intermolecular librational modes in facilitating the ultrafast energy relaxation process in liquid water via their strong nonlinear couplings with the intramolecular OH stretching and HOH bending vibrations.


Assuntos
Simulação por Computador , Hidróxidos/química , Água/química , Transferência de Energia , Transição de Fase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...