Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38559157

RESUMO

Approximately half of U.S. women giving birth annually receive Pitocin, the synthetic form of oxytocin (OXT), yet its effective dose can vary significantly. This variability presents safety concerns due to unpredictable responses, which may lead to adverse outcomes for both mother and baby. To address the need for improved dosing, we developed a data-driven mathematical model to predict OXT receptor (OXTR) binding. Our study focuses on five prevalent OXTR variants (V45L, P108A, L206V, V281M, and E339K) and their impact on OXT-OXTR binding dynamics in two distinct cell types: human embryonic kidney cells (HEK293T), commonly used in experimental systems, and human myometrial smooth muscle cells, containing endogenous OXTR. We parameterized the model with cell-specific OXTR surface localization measurements. To strengthen the robustness of our study, we conducted a comprehensive meta-analysis of OXT- OXTR binding, enabling parameterization of our model with cell-specific OXT-OXTR binding kinetics (myometrial OXT-OXTR K d = 1.6 nM, kon = 6.8 × 10 5 M -1 min -1 , and koff = 0.0011 min -1 ). Our meta-analysis revealed significant homogeneity in OXT-OXTR affinity across experiments and species with a K d = 0.52 - 9.32 nM and mean K d = 1.48 ± 0.36 nM. Our model achieves several valuable insights into designing dosage strategies. First, we predicted that the OXTR complex reaches maximum occupancy at 10 nM OXT in myometrial cells and at 1 µM in HEK293T cells. This information is pivotal for guiding experimental design and data interpretation when working with these distinct cell types, emphasizing the need to consider effects for specific cell types when choosing OXTR-transfected cell lines. Second, our model recapitulated the significant effects of genetic variants for both experimental and physiologically relevant systems, with V281M and E339K substantially compromising OXT-OXTR binding capacity. These findings suggest the need for personalized oxytocin dosing based on individual genetic profiles to enhance therapeutic efficacy and reduce risks, especially in the context of labor and delivery. Third, we demonstrated the potential for rescuing the attenuated cell response observed in V281M and E339K variants by increasing the OXT dosage at specific, early time points. Cellular responses to OXT, including Ca 2+ release, manifest within minutes. Our model indicates that providing V281M- and E339K-expressing cells with doubled OXT dose during the initial minute of binding can elevate OXT-OXTR complex formation to levels comparable to wild-type OXTR. In summary, our study provides a computational framework for precision oxytocin dosing strategies, paving the way for personalized medicine.

2.
Heliyon ; 10(4): e25761, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38384573

RESUMO

Oxytocin acts through the oxytocin receptor (OXTR) to modulate uterine contractility. We previously identified OXTR genetic variants and showed that, in HEK293T cells, two of the OXTR protein variants localized to the cell surface less than wild-type OXTR. Here, we sought to measure OXTR in the more native human myometrial smooth muscle cell (HMSMC) line on both the cell-surface and across the whole cell, and used CRISPR editing to add an HA tag to the endogenous OXTR gene for anti-HA measurement. Quantitative flow cytometry revealed that these cells possessed 55,000 ± 3200 total OXTRs and 4900 ± 390 cell-surface OXTRs per cell. To identify any differential wild-type versus variant localization, we transiently transfected HMSMCs to exogenously express wild-type or variant OXTR with HA and green fluorescent protein tags. Total protein expression of wild-type OXTR and all tested variants were similar. However, the two variants with lower surface localization in HEK293T cells also presented lower surface localization in HMSMCs. Overall, we confirm the differential surface localization of variant OXTR in a more native cell type, and further demonstrate that the quantitative flow cytometry technique is adaptable to whole-cell measurements.

3.
J Biomech Eng ; 146(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37851545

RESUMO

Diversity, equity, and inclusion (DEI) are interconnected with bioengineering, yet have historically been absent from accreditation standards and curricula. Toward educating DEI-competent bioengineers and meeting evolving accreditation requirements, we took a program-level approach to incorporate, catalog, and assess DEI content through the bioengineering undergraduate program. To support instructors in adding DEI content and inclusive pedagogy, our team developed a DEI planning worksheet and surveyed instructors pre- and post-course. Over the academic year, 74% of instructors provided a pre-term and/or post-term response. Of responding instructors, 91% described at least one DEI curricular content improvement, and 88% incorporated at least one new inclusive pedagogical approach. Based on the curricular adjustments reported by instructors, we grouped the bioengineering-related DEI content into five DEI competency categories: bioethics, inclusive design, inclusive scholarship, inclusive professionalism, and systemic inequality. To assess the DEI content incorporation, we employed direct assessment via course assignments, end-of-module student surveys, end-of-term course evaluations, and an end-of-year program review. When asked how much their experience in the program helped them develop specific DEI competencies, students reported a relatively high average of 3.79 (scale of 1 = "not at all" to 5 = "very much"). Additionally, based on student performance in course assignments and other student feedback, we found that instructors were able to effectively incorporate DEI content into a wide variety of courses. We offer this framework and lessons learned to be adopted by programs similarly motivated to train DEI-competent engineering professionals and provide an equitable, inclusive engineering education for all students.


Assuntos
Currículo , Diversidade, Equidade, Inclusão , Humanos , Estudantes , Bioengenharia
5.
Cell Mol Bioeng ; 16(3): 181-185, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37456787

RESUMO

Promotion and tenure (P&T) remain the central tenets of academia. The criteria for P&T both create and reflect the mission of an institution. The discipline of biomedical engineering is built upon the invention and translation of tools to address unmet clinical needs. 'Broadening the bar' for P&T to include efforts in innovation, entrepreneurship, and technology-based transfer (I/E/T) will require establishing the criteria and communication of methodology for their evaluation. We surveyed the department chairs across the fields of biomedical and bioengineering to understand the state-of-the-art in incorporation, evaluation, and definition of I/E/T as applied to the P&T process. The survey results reflected a commitment to increasing and respecting I/E/T activities as part of the P&T criteria. This was balanced by an equally strong desire for improving the education and policy for evaluating I/E/T internally as well as externally. The potential for 'broadening the bar' for P&T to include I/E/T activities in biomedical engineering may serve as an example for other fields in engineering and applied sciences, and a template for potential inclusion of additional efforts such as diversity, equity, and inclusion (DEI) into the pillars of scholarship, education, and service.

6.
GEN Biotechnol ; 2(1): 43-56, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36873811

RESUMO

Vascular endothelial growth factor receptors (VEGFRs) and Axl are receptor tyrosine kinases (RTK) that are targeted in ovarian cancer therapy. Two-dimensional monolayer culture and three-dimensional spheroids are common models for RTK-targeted drug screening: monolayers are simple and economical while spheroids include several genetic and histological tumor features. RTK membrane localization dictates RTK signaling and drug response, however, it is not characterized in these models. We quantify plasma membrane RTK concentrations and show differential RTK abundance and heterogeneity in monolayers versus spheroids. We show VEGFR1 concentrations on the plasma membrane to be 10 times higher in OVCAR8 spheroids than in monolayers; OVCAR8 spheroids are more heterogeneous than monolayers, exhibiting a bimodal distribution of a low-Axl (6200/cell) and a high-Axl subpopulation (25,000/cell). In addition, plasma membrane Axl concentrations differ by 100 times between chemosensitive (OVCAR3) and chemoresistant (OVCAR8) cells and by 10 times between chemoresistant cell lines (OVCAR5 vs. OVCAR8). These systematic findings can guide ovarian cancer model selection for drug screening.

7.
J Biol Chem ; 298(3): 101646, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35093385

RESUMO

Oxytocin is a potent uterotonic agent administered to nearly all patients during childbirth in the United States. Inadequate oxytocin response can necessitate Cesarean delivery or lead to uterine atony and postpartum hemorrhage. Thus, it may be clinically useful to identify patients at risk for poor oxytocin response and develop strategies to sensitize the uterus to oxytocin. Previously, we showed that the V281M variant in the oxytocin receptor (OXTR) gene impairs OXTR trafficking to the cell surface, leading to a decreased oxytocin response in cells. Here, we sought to identify pharmacological chaperones that increased oxytocin response in cells expressing WT or V281M OXTR. We screened nine small-molecule agonists and antagonists of the oxytocin/vasopressin receptor family and identified two, SR49059 and L371,257, that restored both OXTR trafficking and oxytocin response in HEK293T cells transfected with V281M OXTR. In hTERT-immortalized human myometrial cells, which endogenously express WT OXTR, treatment with SR49059 and L371,257 increased the amount of OXTR on the cell surface by two- to fourfold. Furthermore, SR49059 and L371,257 increased the endogenous oxytocin response in hTERT-immortalized human myometrial cells by 35% and induced robust oxytocin responses in primary myometrial cells obtained from patients at the time of Cesarean section. If future studies demonstrate that these pharmacological chaperones or related compounds function similarly in vivo, we propose that they could potentially be used to enhance clinical response to oxytocin.


Assuntos
Miométrio , Ocitocina , Receptores de Ocitocina , Bibliotecas de Moléculas Pequenas , Feminino , Células HEK293 , Humanos , Miométrio/efeitos dos fármacos , Miométrio/metabolismo , Ocitocina/agonistas , Ocitocina/antagonistas & inibidores , Ocitocina/metabolismo , Ocitocina/farmacologia , Gravidez , Receptores de Ocitocina/agonistas , Receptores de Ocitocina/antagonistas & inibidores , Receptores de Ocitocina/genética , Receptores de Ocitocina/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia
8.
ACS Pharmacol Transl Sci ; 4(5): 1543-1555, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34661073

RESUMO

The hormone oxytocin is commonly administered during childbirth to initiate and strengthen uterine contractions and prevent postpartum hemorrhage. However, patients have wide variation in the oxytocin dose required for a clinical response. To begin to uncover the mechanisms underlying this variability, we screened the 11 most prevalent missense genetic variants in the oxytocin receptor (OXTR) gene. We found that five variants, V45L, P108A, L206V, V281M, and E339K, significantly altered oxytocin-induced Ca2+ signaling or ß-arrestin recruitment and proceeded to assess the effects of these variants on OXTR trafficking to the cell membrane, desensitization, and internalization. The variants P108A and L206V increased OXTR localization to the cell membrane, whereas V281M and E339K caused OXTR to be retained inside the cell. We examined how the variants altered the balance between OXTR activation and desensitization, which is critical for appropriate oxytocin dosing. The E339K variant impaired OXTR activation, internalization, and desensitization to roughly equal extents. In contrast, V281M decreased OXTR activation but had no effect on internalization and desensitization. V45L and P108A did not alter OXTR activation but did impair ß-arrestin recruitment, internalization, and desensitization. Molecular dynamics simulations predicted that V45L and P108A prevent extension of the first intracellular loop of OXTR, thus inhibiting ß-arrestin binding. Overall, our data suggest mechanisms by which OXTR genetic variants could alter clinical response to oxytocin.

9.
Biol Sex Differ ; 11(1): 17, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32295632

RESUMO

We now know that cancer is many different diseases, with great variation even within a single histological subtype. With the current emphasis on developing personalized approaches to cancer treatment, it is astonishing that we have not yet systematically incorporated the biology of sex differences into our paradigms for laboratory and clinical cancer research. While some sex differences in cancer arise through the actions of circulating sex hormones, other sex differences are independent of estrogen, testosterone, or progesterone levels. Instead, these differences are the result of sexual differentiation, a process that involves genetic and epigenetic mechanisms, in addition to acute sex hormone actions. Sexual differentiation begins with fertilization and continues beyond menopause. It affects virtually every body system, resulting in marked sex differences in such areas as growth, lifespan, metabolism, and immunity, all of which can impact on cancer progression, treatment response, and survival. These organismal level differences have correlates at the cellular level, and thus, males and females can fundamentally differ in their protections and vulnerabilities to cancer, from cellular transformation through all stages of progression, spread, and response to treatment. Our goal in this review is to cover some of the robust sex differences that exist in core cancer pathways and to make the case for inclusion of sex as a biological variable in all laboratory and clinical cancer research. We finish with a discussion of lab- and clinic-based experimental design that should be used when testing whether sex matters and the appropriate statistical models to apply in data analysis for rigorous evaluations of potential sex effects. It is our goal to facilitate the evaluation of sex differences in cancer in order to improve outcomes for all patients.


Assuntos
Neoplasias , Caracteres Sexuais , Animais , Senescência Celular , Epigenômica , Humanos , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Neovascularização Patológica/genética , Neovascularização Patológica/imunologia , Neovascularização Patológica/metabolismo , Proteína Supressora de Tumor p53/metabolismo
10.
Sci Rep ; 7(1): 3185, 2017 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-28600529

RESUMO

Cyclic peptides containing the Arg-Gly-Asp (RGD) sequence have been shown to specifically bind the angiogenesis biomarker α V ß 3 integrin. We report the synthesis, chemical characterization, and biological evaluation of two novel dimeric cyclic RGD-based molecular probes for the targeted imaging of α V ß 3 activity (a radiolabeled version, 64Cu-NOTA-PEG4-cRGD2, for PET imaging, and a fluorescent version, FITC-PEG4-cRGD2, for in vitro work). We investigated the performance of this probe at the receptor, cell, organ, and whole-body levels, including its use to detect diabetes associated impairment of ischemia-induced myocardial angiogenesis. Both versions of the probe were found to be stable, demonstrated fast receptor association constants, and showed high specificity for α V ß 3 in HUVECs (K d ~ 35 nM). Dynamic PET-CT imaging indicated rapid blood clearance via kidney filtration, and accumulation within α V ß 3-positive infarcted myocardium. 64Cu-NOTA-PEG4-cRGD2 demonstrated a favorable biodistribution, slow washout, and excellent performance with respect to the quality of the PET-CT images obtained. Importantly, the ratio of probe uptake in infarcted heart tissue compared to normal tissue was significantly higher in non-diabetic rats than in diabetic ones. Overall, our probes are promising agents for non-invasive quantitative imaging of α V ß 3 expression, both in vitro and in vivo.


Assuntos
Integrina alfaVbeta3/genética , Neovascularização Patológica/tratamento farmacológico , Peptídeos Cíclicos/farmacologia , Animais , Linhagem Celular Tumoral , Radioisótopos de Cobre/farmacologia , Dimerização , Compostos Heterocíclicos/química , Compostos Heterocíclicos com 1 Anel , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Integrina alfaVbeta3/antagonistas & inibidores , Rim/efeitos dos fármacos , Rim/metabolismo , Camundongos , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/química , Tomografia por Emissão de Pósitrons , Ratos , Distribuição Tecidual/efeitos dos fármacos
11.
Integr Biol (Camb) ; 9(5): 464-484, 2017 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-28436498

RESUMO

Recently, intracellular receptor signaling has been identified as a key component mediating cell responses for various receptor tyrosine kinases (RTKs). However, the extent each endocytic compartment (endocytic vesicle, early endosome, recycling endosome, late endosome, lysosome and nucleus) contributes to receptor signaling has not been quantified. Furthermore, our understanding of endocytosis and receptor signaling is complicated by cell- or receptor-specific endocytosis mechanisms. Therefore, towards understanding the differential endocytic compartment signaling roles, and identifying how to achieve signal transduction control for RTKs, we delineate how endocytosis regulates RTK signaling. We achieve this via a meta-analysis across eight RTKs, integrating computational modeling with experimentally derived cell (compartment volume, trafficking kinetics and pH) and ligand-receptor (ligand/receptor concentration and interaction kinetics) physiology. Our simulations predict the abundance of signaling from eight RTKs, identifying the following hierarchy in RTK signaling: PDGFRß > IGFR1 > EGFR > PDGFRα > VEGFR1 > VEGFR2 > Tie2 > FGFR1. We find that endocytic vesicles are the primary cell signaling compartment; over 43% of total receptor signaling occurs within the endocytic vesicle compartment for these eight RTKs. Mechanistically, we found that high RTK signaling within endocytic vesicles may be attributed to their low volume (5.3 × 10-19 L) which facilitates an enriched ligand concentration (3.2 µM per ligand molecule within the endocytic vesicle). Under the analyzed physiological conditions, we identified extracellular ligand concentration as the most sensitive parameter to change; hence the most significant one to modify when regulating absolute compartment signaling. We also found that the late endosome and nucleus compartments are important contributors to receptor signaling, where 26% and 18%, respectively, of average receptor signaling occurs across the eight RTKs. Conversely, we found very low membrane-based receptor signaling, exhibiting <1% of the total receptor signaling for these eight RTKs. Moreover, we found that nuclear translocation, mechanistically, requires late endosomal transport; when we blocked receptor trafficking from late endosomes to the nucleus we found a 57% reduction in nuclear translocation. In summary, our research has elucidated the significance of endocytic vesicles, late endosomes and the nucleus in RTK signal propagation.


Assuntos
Modelos Biológicos , Receptores Proteína Tirosina Quinases/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Compartimento Celular , Núcleo Celular/enzimologia , Endocitose , Endossomos/enzimologia , Humanos , Cinética , Ligantes , Fosforilação , Transdução de Sinais , Vesículas Transportadoras/enzimologia
12.
Methods Mol Biol ; 1570: 117-138, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28238133

RESUMO

Nanosensor-based detection of biomarkers can improve medical diagnosis; however, a critical factor in nanosensor development is deciding which biomarker to target, as most diseases present several biomarkers. Biomarker-targeting decisions can be informed via an understanding of biomarker expression. Currently, immunohistochemistry (IHC) is the accepted standard for profiling biomarker expression. While IHC provides a relative mapping of biomarker expression, it does not provide cell-by-cell readouts of biomarker expression or absolute biomarker quantification. Flow cytometry overcomes both these IHC challenges by offering biomarker expression on a cell-by-cell basis, and when combined with calibration standards, providing quantitation of biomarker concentrations: this is known as qFlow cytometry. Here, we outline the key components for applying qFlow cytometry to detect biomarkers within the angiogenic vascular endothelial growth factor receptor family. The key aspects of the qFlow cytometry methodology include: antibody specificity testing, immunofluorescent cell labeling, saturation analysis, fluorescent microsphere calibration, and quantitative analysis of both ensemble and cell-by-cell data. Together, these methods enable high-throughput quantification of biomarker expression.


Assuntos
Biomarcadores , Técnicas Biossensoriais/métodos , Citometria de Fluxo/métodos , Ensaios de Triagem em Larga Escala , Receptores de Superfície Celular/metabolismo , Descoberta de Drogas/métodos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Neovascularização Fisiológica/efeitos dos fármacos , Software , Estatística como Assunto/métodos
13.
J Biol Chem ; 290(28): 17485-94, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-26037927

RESUMO

Deficient angiogenesis may contribute to worsen the prognosis of myocardial ischemia, peripheral arterial disease, ischemic stroke, etc. Dyslipidemic and inflammatory environments attenuate endothelial cell (EC) proliferation and angiogenesis, worsening the prognosis of ischemia. Under these dyslipidemic and inflammatory environments, EC-caspase-1 becomes activated and induces inflammatory cell death that is defined as pyroptosis. However, the underlying mechanism that correlates caspase-1 activation with angiogenic impairment and the prognosis of ischemia remains poorly defined. By using flow cytometric analysis, enzyme and receptor inhibitors, and hind limb ischemia model in caspase-1 knock-out (KO) mice, we examined our novel hypothesis, i.e. inhibition of caspase-1 in ECs under dyslipidemic and inflammatory environments attenuates EC pyroptosis, improves EC survival mediated by vascular endothelial growth factor receptor 2 (VEGFR-2), angiogenesis, and the prognosis of ischemia. We have made the following findings. Proatherogenic lipids induce higher caspase-1 activation in larger sizes of human aortic endothelial cells (HAECs) than in smaller sizes of HAECs. Proatherogenic lipids increase pyroptosis significantly more in smaller sizes of HAECs than in larger sizes of the cells. VEGFR-2 inhibition increases caspase-1 activation in HAECs induced by lysophosphatidylcholine treatment. Caspase-1 activation inhibits VEGFR-2 expression. Caspase-1 inhibition improves the tube formation of lysophosphatidylcholine-treated HAECs. Finally, caspase-1 depletion improves angiogenesis and blood flow in mouse hind limb ischemic tissues. Our results have demonstrated for the first time that inhibition of proatherogenic caspase-1 activation in ECs improves angiogenesis and the prognosis of ischemia.


Assuntos
Caspase 1/metabolismo , Inibidores de Caspase/farmacologia , Isquemia/tratamento farmacológico , Neovascularização Fisiológica/efeitos dos fármacos , Animais , Caspase 1/deficiência , Caspase 1/genética , Morte Celular/efeitos dos fármacos , Tamanho Celular , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/enzimologia , Técnicas de Silenciamento de Genes , Membro Posterior/irrigação sanguínea , Humanos , Isquemia/enzimologia , Isquemia/patologia , Lipídeos/química , Lipídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
14.
PLoS One ; 9(4): e93929, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24710326

RESUMO

We present plasmonic optical trapping of micron-sized particles in biologically relevant buffer media with varying ionic strength. The media consist of 3 cell-growth solutions and 2 buffers and are specifically chosen due to their widespread use and applicability to breast-cancer and angiogenesis studies. High-precision rheological measurements on the buffer media reveal that, in all cases excluding the 8.0 pH Stain medium, the fluids exhibit Newtonian behavior, thereby enabling straightforward measurements of optical trap stiffness from power-spectral particle displacement data. Using stiffness as a trapping performance metric, we find that for all media under consideration the plasmonic nanotweezers generate optical forces 3-4x a conventional optical trap. Further, plasmonic trap stiffness values are comparable to those of an identical water-only system, indicating that the performance of a plasmonic nanotweezer is not degraded by the biological media. These results pave the way for future biological applications utilizing plasmonic optical traps.


Assuntos
Nanotecnologia/métodos , Pinças Ópticas , Meios de Cultura
15.
Cancer Med ; 3(2): 225-44, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24449499

RESUMO

Plasma membrane-localized vascular endothelial growth factor receptors (VEGFR) play a critical role in transducing VEGF signaling toward pro and antiangiogenic outcomes and quantitative characterization of these receptors is critical toward identifying biomarkers for antiangiogenic therapies, understanding mechanisms of action of antiangiogenic drugs, and advancing predictive computational models. While in vitro analysis of cell surface-VEGFRs has been performed, little is known about the levels of cell surface-VEGFR on tumor cells. Therefore, we inoculate nude mice with the human triple-negative breast cancer, MDA-MB-231, cell line; isolate human tumor cells and mouse tumor endothelial cells from xenografts; and quantitatively characterize the VEGFR localization on these cells. We observe 15,000 surface-VEGFR1/tumor endothelial cell versus 8200 surface-VEGFR1/tumor endothelial cell at 3 and 6 weeks of tumor growth, respectively; and we quantify 1200-1700 surface-VEGFR2/tumor endothelial cell. The tumor cell levels of VEGFR1 and VEGFR2 are relatively constant between 3 and 6 weeks: 2000-2200 surface-VEGFR1/tumor cell and ~1000 surface-VEGFR2/tumor cell. Cell-by-cell analysis provides additional insight into tumor heterogeneity by identifying four cellular subpopulations based on size and levels of cell membrane-localized VEGFR. Furthermore, when these ex vivo data are compared to in vitro data, we observe little to no VEGFRs on MDA-MB-231 cells, and the MDA-MB-231 VEGFR surface levels are not regulated by a saturating dose of VEGF. Overall, the quantification of these dissimilarities for the first time in tumor provides insight into the balance of modulatory (VEGFR1) and proangiogenic (VEGFR2) receptors.


Assuntos
Neoplasias da Mama/metabolismo , Células Endoteliais/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Neoplasias da Mama/patologia , Processos de Crescimento Celular/fisiologia , Células Endoteliais/citologia , Feminino , Citometria de Fluxo , Xenoenxertos , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Camundongos Nus , Proteômica , Transdução de Sinais
16.
PLoS One ; 7(9): e44791, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22984559

RESUMO

VEGFR surface localization plays a critical role in converting extracellular VEGF signaling towards angiogenic outcomes, and the quantitative characterization of these parameters is critical for advancing computational models; however the levels of these receptors on blood vessels is currently unknown. Therefore our aim is to quantitatively determine the VEGFR localization on endothelial cells from mouse hindlimb skeletal muscles. We contextualize this VEGFR quantification through comparison to VEGFR-levels on cells in vitro. Using quantitative fluorescence we measure and compare the levels of VEGFR1 and VEGFR2 on endothelial cells isolated from C57BL/6 and BALB/c gastrocnemius and tibialis anterior hindlimb muscles. Fluorescence measurements are calibrated using beads with known numbers of phycoerythrin molecules. The data show a 2-fold higher VEGFR1 surface localization relative to VEGFR2 with 2,000-3,700 VEGFR1/endothelial cell and 1,300-2,000 VEGFR2/endothelial cell. We determine that endothelial cells from the highly glycolytic muscle, tibialis anterior, contain 30% higher number of VEGFR1 surface receptors than gastrocnemius; BALB/c mice display ~17% higher number of VEGFR1 than C57BL/6. When we compare these results to mouse fibroblasts in vitro, we observe high levels of VEGFR1 (35,800/cell) and very low levels of VEGFR2 (700/cell), while in human endothelial cells in vitro, we observe that the balance of VEGFRs is inverted, with higher levels VEGFR2 (5,800/cell) and lower levels of VEGFR1 (1,800/cell). Our studies also reveal significant cell-to-cell heterogeneity in receptor expression, and the quantification of these dissimilarities ex vivo for the first time provides insight into the balance of anti-angiogenic or modulatory (VEGFR1) and pro-angiogenic (VEGFR2) signaling.


Assuntos
Células Endoteliais/citologia , Regulação da Expressão Gênica , Músculo Esquelético/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/biossíntese , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/biossíntese , Células 3T3 , Animais , Calibragem , Feminino , Citometria de Fluxo/métodos , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Microcirculação
17.
Mol Pharmacol ; 73(1): 27-41, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17932221

RESUMO

Neuronal nicotinic acetylcholine (ACh) receptors are ligand-gated, cation-selective ion channels. Nicotinic receptors containing alpha4, alpha6, beta2, and beta3 subunits are expressed in midbrain dopaminergic neurons, and they are implicated in the response to smoked nicotine. Here, we have studied the cell biological and biophysical properties of receptors containing alpha6 and beta3 subunits by using fluorescent proteins fused within the M3-M4 intracellular loop. Receptors containing fluorescently tagged beta3 subunits were fully functional compared with receptors with untagged beta3 subunits. We find that beta3- and alpha6-containing receptors are highly expressed in neurons and that they colocalize with coexpressed, fluorescent alpha4 and beta2 subunits in neuronal soma and dendrites. Förster resonance energy transfer (FRET) reveals efficient, specific assembly of beta3 and alpha6 into nicotinic receptor pentamers of various subunit compositions. Using FRET, we demonstrate directly that only a single beta3 subunit is incorporated into nicotinic acetylcholine receptors (nAChRs) containing this subunit, whereas multiple subunit stoichiometries exist for alpha4- and alpha6-containing receptors. Finally, we demonstrate that nicotinic ACh receptors are localized in distinct microdomains at or near the plasma membrane using total internal reflection fluorescence (TIRF) microscopy. We suggest that neurons contain large, intracellular pools of assembled, functional nicotinic receptors, which may provide them with the ability to rapidly up-regulate nicotinic responses to endogenous ligands such as ACh, or to exogenous agents such as nicotine. Furthermore, this report is the first to directly measure nAChR subunit stoichiometry using FRET and plasma membrane localization of alpha6- and beta3-containing receptors using TIRF.


Assuntos
Neurônios/metabolismo , Receptores Nicotínicos/metabolismo , Frações Subcelulares/metabolismo , Transferência Ressonante de Energia de Fluorescência , Transporte Proteico , Receptores Nicotínicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...