Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rice (N Y) ; 15(1): 32, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35763153

RESUMO

Heat stress during gametogenesis leads to spikelet sterility. To ascertain the role of female reproductive organ (pistil), two rice genotypes N22 and IR64 with contrasting heat stress responses were exposed to control (30 °C) and heat stress (38 °C and 40 °C) during megasporogenesis. Anatomical observations of ovule revealed greater disappearance of megaspore mother cell and nuclei at early stages, and during later stages mature embryo sac without female germ unit, improper positioning of nuclei, and shrunken embryo sac was observed in the sensitive IR64. Under heat stress, a decrease in sugar and starch, increase in H2O2 and malondialdehyde with lower antioxidant enzyme activities were recorded in pistils of both N22 and IR64. Lower accumulation of TCA cycle metabolites and amino acids were noticed in IR64 pistils under heat stress at gametogenesis, whereas N22 exhibited favorable metabolite profiles. At heading, however, N22 pistils had higher carbohydrate accumulation and better ROS homeostasis, suggesting higher recovery after heat stress exposure. In summary, the results indicate that heat stress during megasporogenesis leads to irreversible anatomical and physiological changes in pistil and alters metabolic signatures leading to increased spikelet sterility in rice. Mechanisms identified for enhanced heat tolerance in pistil can help in developing rice varieties that are better adapted to future hotter climate.

2.
Plant Cell Environ ; 44(7): 2049-2065, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33576033

RESUMO

Rapid increases in minimum night temperature than in maximum day temperature is predicted to continue, posing significant challenges to crop productivity. Rice and wheat are two major staples that are sensitive to high night-temperature (HNT) stress. This review aims to (i) systematically compare the grain yield responses of rice and wheat exposed to HNT stress across scales, and (ii) understand the physiological and biochemical responses that affect grain yield and quality. To achieve this, we combined a synthesis of current literature on HNT effects on rice and wheat with information from a series of independent experiments we conducted across scales, using a common set of genetic materials to avoid confounding our findings with differences in genetic background. In addition, we explored HNT-induced alterations in physiological mechanisms including carbon balance, source-sink metabolite changes and reactive oxygen species. Impacts of HNT on grain developmental dynamics focused on grain-filling duration, post-flowering senescence, changes in grain starch and protein composition, starch metabolism enzymes and chalk formation in rice grains are summarized. Finally, we highlight the need for high-throughput field-based phenotyping facilities for improved assessment of large-diversity panels and mapping populations to aid breeding for increased resilience to HNT in crops.


Assuntos
Oryza/fisiologia , Sementes/química , Sementes/crescimento & desenvolvimento , Triticum/fisiologia , Agricultura/métodos , Grão Comestível/fisiologia , Temperatura Alta , Oryza/química , Fenótipo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Amido/química , Triticum/química
3.
Physiol Plant ; 169(4): 501-514, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32314362

RESUMO

Unraveling the metabolic and phytohormonal changes in anthers exposed to heat stress would help identify mechanisms regulating heat stress tolerance during the sensitive reproductive stage. Two spring wheat genotypes contrasting for heat tolerance were exposed to heat stress during heading in controlled environment chambers. Anthers were collected from main and primary spikes for metabolic and phytohormonal profiling. A significant reduction in seed set (38%), grain number (54%) and grain weight (52%) per plant was recorded in the sensitive (KSG1177) but not in the tolerant (KSG1214) genotype under heat stress compared to control. Anther metabolite accumulation did not vary quantitatively between main and primary spikes. Hierarchical clustering of the genotypes and treatments using metabolites and phytohormones revealed a distinct cluster for KSG1177 under heat stress from that of control and KSG1214. A significant increase in N-based amino acids, ABA, IAA-conjugate and a decrease in polyamines and organic acids were observed in wheat anthers exposed to heat stress. Unlike KSG1214, a significantly higher accumulation of amino acids, ABA and IAA-conjugate in anthers of the sensitive KSG1177 was recorded under heat stress. These findings provide the rationale and direction towards developing molecular markers for enhancing heat stress tolerance in wheat.


Assuntos
Grão Comestível , Triticum/genética , Resposta ao Choque Térmico , Reguladores de Crescimento de Plantas , Sementes
4.
Plant Cell Environ ; 43(2): 431-447, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31702834

RESUMO

Unlike sporadic daytime heat spikes, a consistent increase in night-time temperatures can potentially derail the genetic gains being achieved. Ten winter wheat genotypes were exposed to six different night-time temperatures (15-27°C) during flowering and grain-filling stages in controlled environment chambers. We identified the night-time temperature of 23o C as the critical threshold beyond which a consistent decline in yields and quality was observed. Confocal laser scanning micrographs of central endosperm, bran, and germ tissue displayed differential accumulation of protein, lipid, and starch with increasing night-time temperatures. KS07077M-1 recorded a decrease in starch and an increase in protein and lipid in central endosperm with increasing night-time temperatures, whereas the same was significantly lower in the tolerant SY Monument. Expression analysis of genes encoding 21 enzymes (including isoforms) involved in grain-starch metabolism in developing grains revealed a high night-time temperature (HNT)-induced reduction in transcript levels of adenosine diphosphate glucose pyrophosphorylase small subunit involved in starch synthesis and a ≥2-fold increase in starch degrading enzymes isoamylase III, alpha-, and beta-amylase. The identified critical threshold, grain compositional changes, and the key enzymes in grain starch metabolism that lead to poor starch accumulation in grains establish the foundational knowledge for enhancing HNT tolerance in wheat.


Assuntos
Grão Comestível/metabolismo , Metabolismo dos Lipídeos , Amido/metabolismo , Temperatura , Triticum/metabolismo , Metabolismo dos Carboidratos/genética , Metabolismo dos Carboidratos/fisiologia , Clorofila/análise , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Endosperma/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Temperatura Alta , Lipídeos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brotos de Planta/metabolismo , Sementes/metabolismo , Transcriptoma , Triticum/genética
5.
J Exp Bot ; 70(12): 3357-3371, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-30949711

RESUMO

Sorghum is often exposed to suboptimal low temperature stress under field conditions, particularly at the seedling establishment stage. Enhancing chilling tolerance will facilitate earlier planting and so minimize the negative impacts of other stresses experienced at later growth stages. Genome-wide association mapping was performed on a sorghum association panel grown under control (30/20 °C; day/night) and chilling (20/10 °C) conditions. Genomic regions on chromosome 7, controlling the emergence index and seedling (root and shoot) vigor, were associated with increased chilling tolerance but they did not co-localize with undesirable tannin content quantitative trait loci (QTLs). Shoot and root samples from highly contrasting haplotype pairs expressing differential responses to chilling stress were used to identify candidate genes. Three candidate genes (an alpha/beta hydrolase domain protein, a DnaJ/Hsp40 motif-containing protein, and a YTH domain-containing RNA-binding protein) were expressed at significantly higher levels under chilling stress in the tolerant haplotype compared with the sensitive haplotype and BTx623. Moreover, two CBF/DREB1A transcription factors on chromosome 2 showed a divergent response to chilling in the contrasting haplotypes. These studies identify haplotype differences on chromosome 7 that modulate chilling tolerance by either regulating CBF or feeding back into this signaling pathway. We have identified new candidate genes that will be useful markers in ongoing efforts to develop tannin-free chilling-tolerant sorghum hybrids.


Assuntos
Temperatura Baixa , Genes de Plantas , Sorghum/genética , Estresse Fisiológico/genética , Mapeamento Cromossômico , Produção Agrícola , Marcadores Genéticos
6.
Plant Cell Environ ; 42(4): 1233-1246, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30471235

RESUMO

Carbon loss under high night-time temperature (HNT) leads to significant reduction in wheat yield. Growth chamber studies were carried out using six winter wheat genotypes, to unravel postheading HNT (23°C)-induced alterations in carbon balance, source-sink metabolic changes, yield, and yield-related traits compared with control (15°C) conditions. Four of the six tested genotypes recorded a significant increase in night respiration after 4 days of HNT exposure, with all the cultivars regulating carbon loss and demonstrating different degree of acclimation to extended HNT exposure. Metabolite profiling indicated carbohydrate metabolism in spikes and activation of the TriCarboxylic Acid (TCA) cycle in leaves as important pathways operating under HNT exposure. A significant increase in sugars, sugar-alcohols, and phosphate in spikes of the tolerant genotype (Tascosa) indicated osmolytes and membrane protective mechanisms acting against HNT damage. Enhanced night respiration under HNT resulted in higher accumulation of TCA cycle intermediates like isocitrate and fumarate in leaves of the susceptible genotype (TX86A5606). Lower grain number due to lesser productive spikes and reduced grain weight due to shorter grain-filling duration determined HNT-induced yield loss in winter wheat. Traits and mechanisms identified will help catalyze the development of physiological and metabolic markers for breeding HNT-tolerant wheat.


Assuntos
Carbono/metabolismo , Triticum/metabolismo , Sequestro de Carbono , Ritmo Circadiano , Temperatura Alta , Metabolômica , Fotossíntese , Triticum/crescimento & desenvolvimento , Triticum/fisiologia
7.
J Exp Bot ; 64(10): 2739-51, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23698631

RESUMO

Zn deficiency is a widespread problem in rice (Oryza sativa L.) grown under flooded conditions, limiting growth and grain Zn accumulation. Genotypes with Zn deficiency tolerance or high grain Zn have been identified in breeding programmes, but little is known about the physiological mechanisms conferring these traits. A protocol was developed for growing rice to maturity in agar nutrient solution (ANS), with optimum Zn-sufficient growth achieved at 1.5 µM ZnSO4.7H2O. The redox potential in ANS showed a decrease from +350 mV to -200 mV, mimicking the reduced conditions of flooded paddy soils. In subsequent experiments, rice genotypes contrasting for Zn deficiency tolerance and grain Zn were grown in ANS with sufficient and deficient Zn to assess differences in root uptake of Zn, root-to-shoot Zn translocation, and in the predominant sources of Zn accumulation in the grain. Zn efficiency of a genotype was highly influenced by root-to-shoot translocation of Zn and total Zn uptake. Translocation of Zn from root to shoot was more limiting at later growth stages than at the vegetative stage. Under Zn-sufficient conditions, continued root uptake during the grain-filling stage was the predominant source of grain Zn loading in rice, whereas, under Zn-deficient conditions, some genotypes demonstrated remobilization of Zn from shoot and root to grain in addition to root uptake. Understanding the mechanisms of grain Zn loading in rice is crucial in selecting high grain Zn donors for target-specific breeding and also to establish fertilizer and water management strategies for achieving high grain Zn.


Assuntos
Oryza/metabolismo , Sementes/metabolismo , Zinco/metabolismo , Transporte Biológico , Genótipo , Oryza/química , Oryza/genética , Raízes de Plantas/química , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Brotos de Planta/química , Brotos de Planta/genética , Brotos de Planta/metabolismo , Sementes/química , Sementes/genética , Zinco/análise
8.
Front Plant Sci ; 4: 534, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24400015

RESUMO

One of the important factors that influences Zn deficiency tolerance and grain Zn loading in crops is the within-plant allocation of Zn. Three independent experiments were carried out to understand the internal Zn distribution patterns in rice genotypes grown in Zn-sufficient and Zn-deficient agar nutrient solution (ANS). In one of the experiments, two rice genotypes (IR55179 and KP) contrasting in Zn deficiency tolerance were leaf-labeled with (65)Zn. In the other two experiments, two Zn biofortification breeding lines (IR69428 and SWHOO) were either root- or leaf-labeled with (65)Zn. Rice genotype IR55179 showed significantly higher Zn deficiency tolerance than KP at 21 and 42 days after planting. When KP was Zn-deficient, it failed to translocate (65)Zn from the labeled leaf to newly emerging leaves. Similarly, the root-to-shoot translocation of unlabeled Zn was lower in KP than in IR55179. These results suggest that some Zn-efficient rice genotypes have greater ability to translocate Zn from older to actively growing tissues than genotypes sensitive to Zn deficiency. Among the two Zn biofortication breeding lines that were leaf-labeled with (65)Zn at 10 days before panicle initiation stage, (65)Zn distribution in the grains at maturity was similar between both genotypes in Zn-sufficient conditions. However, under Zn-deficient conditions, SWHOO accumulated significantly higher (65)Zn in grains than IR69428, indicating that SWHOO is a better remobilizer than IR69428. When the roots of these two Zn biofortication breeding lines were exposed to (65)Zn solution at 10 days after flowering, IR69428 showed higher root uptake of (65)Zn than SWHOO in Zn-sufficient conditions, but (65)Zn allocation in the aerial parts of the plant was similar between both genotypes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...