Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 8726, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33888752

RESUMO

Theta-burst stimulation (TBS) is a form of non-invasive neuromodulation which is delivered in an intermittent (iTBS) or continuous (cTBS) manner. Although 600 pulses is the most common dose, the goal of these experiments was to evaluate the effect of higher per-dose pulse numbers on cortical excitability. Sixty individuals were recruited for 2 experiments. In Experiment 1, participants received 600, 1200, 1800, or sham (600) iTBS (4 visits, counterbalanced, left motor cortex, 80% active threshold). In Experiment 2, participants received 600, 1200, 1800, 3600, or sham (600) cTBS (5 visits, counterbalanced). Motor evoked potentials (MEP) were measured in 10-min increments for 60 min. For iTBS, there was a significant interaction between dose and time (F = 3.8296, p = 0.01), driven by iTBS (1200) which decreased excitability for up to 50 min (t = 3.1267, p = 0.001). For cTBS, there was no overall interaction between dose and time (F = 1.1513, p = 0.33). Relative to sham, cTBS (3600) increased excitability for up to 60 min (t = 2.0880, p = 0.04). There were no other significant effects of dose relative to sham in either experiment. Secondary analyses revealed high within and between subject variability. These results suggest that iTBS (1200) and cTBS (3600) are, respectively, the most effective doses for decreasing and increasing cortical excitability.


Assuntos
Excitabilidade Cortical , Ritmo Teta/fisiologia , Adulto , Eletromiografia , Potencial Evocado Motor/fisiologia , Feminino , Humanos , Masculino , Estimulação Magnética Transcraniana/métodos , Adulto Jovem
3.
Hum Brain Mapp ; 42(1): 128-138, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33089953

RESUMO

The purpose of this study was to develop and evaluate a new, open-source MR-compatible device capable of assessing unipedal and bipedal lower extremity movement with minimal head motion and high test-retest reliability. To evaluate the prototype, 20 healthy adults participated in two magnetic resonance imaging (MRI) visits, separated by 2-6 months, in which they performed a visually guided dorsiflexion/plantar flexion task with their left foot, right foot, and alternating feet. Dependent measures included: evoked blood oxygen level-dependent (BOLD) signal in the motor network, head movement associated with dorsiflexion/plantar flexion, the test-retest reliability of these measurements. Left and right unipedal movement led to a significant increase in BOLD signal compared to rest in the medial portion of the right and left primary motor cortex (respectively), and the ipsilateral cerebellum (FWE corrected, p < .001). Average head motion was 0.10 ± 0.02 mm. The test-retest reliability was high for the functional MRI data (intraclass correlation coefficients [ICCs]: >0.75) and the angular displacement of the ankle joint (ICC: 0.842). This bipedal device can robustly isolate activity in the motor network during alternating plantarflexion and dorsiflexion with minimal head movement, while providing high test-retest reliability. Ultimately, these data and open-source building instructions will provide a new, economical tool for investigators interested in evaluating brain function resulting from lower extremity movement.


Assuntos
Cerebelo/fisiologia , Técnicas de Diagnóstico Neurológico/instrumentação , Desenho de Equipamento/normas , Neuroimagem Funcional , Movimentos da Cabeça/fisiologia , Extremidade Inferior/fisiologia , Atividade Motora/fisiologia , Córtex Motor/fisiologia , Rede Nervosa/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Cerebelo/diagnóstico por imagem , Feminino , Neuroimagem Funcional/normas , Humanos , Imageamento por Ressonância Magnética , Masculino , Córtex Motor/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Reprodutibilidade dos Testes , Adulto Jovem
4.
Drug Alcohol Depend ; 218: 108409, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33250384

RESUMO

BACKGROUND: Poorly controlled chronic pain can lead to non-prescription use of opiates, which is a growing crisis in our communities. Transcranial magnetic stimulation (TMS) is a non-invasive therapeutic tool which has emerged as a potential treatment option for these patients. It is still unclear, however, if the dorsolateral prefrontal cortex (DLPFC) or the motor cortex (MC) is a more effective treatment location. The purpose of this study was to directly compare the effects of DLPFC versus MC TMS on pain severity and the urge to use opiates among chronic pain patients. METHODS: Twenty-two individuals with chronic pain currently using prescription opiates were randomized to receive 10, 3000 pulse sessions of 10 Hz repetitive TMS (rTMS) to the left DLPFC (110% resting motor threshold) or left MC (90% resting motor threshold). Multivariate linear models were used to evaluate the effect of TMS on pain and opiate use, including items from the Brief Pain Inventory (BPI) as well as subjective ratings of pain, distress, and the urge for opiates. RESULTS: Twenty participants (91%) completed all 10 treatment sessions and follow up visits. There was a main effect of stimulation site (F7,210 = 3.742, p = 0.001), wherein MC stimulation decreased pain interference significantly more than DLPFC stimulation (F1,216 = 8.447, p = 0.004). While both sites had comparable effect sizes on stress, pain, and discomfort, MC stimulation had larger effects on pain interference (Cohen's d: 0.7) and urge to use opiates (Cohen's d: 0.5) than DLPFC stimulation. CONCLUSION: These data suggest that the MC may be a promising target for decreasing opiate dependence and pain interference among chronic pain patients.


Assuntos
Dor Crônica/terapia , Transtornos Relacionados ao Uso de Opioides/terapia , Estimulação Magnética Transcraniana , Adulto , Analgésicos Opioides , Dor Crônica/etiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Córtex Motor , Alcaloides Opiáceos , Medição da Dor , Córtex Pré-Frontal/fisiologia , Descanso , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA