Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hypertension ; 81(5): e51-e62, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38445498

RESUMO

BACKGROUND: Arterial stiffness is a cardiovascular risk factor and dramatically increases as women transition through menopause. The current study assessed whether a mouse model of menopause increases arterial stiffness in a similar manner to aging and whether activation of the G-protein-coupled estrogen receptor could reverse stiffness. METHODS: Female C57Bl/6J mice were ovariectomized at 10 weeks of age or aged to 52 weeks, and some mice were treated with G-protein-coupled estrogen receptor agonists. RESULTS: Ovariectomy and aging increased pulse wave velocity to a similar extent independent of changes in blood pressure. Aging increased carotid wall thickness, while ovariectomy increased material stiffness without altering vascular geometry. RNA-sequencing analysis revealed that ovariectomy downregulated smooth muscle contractile genes. The enantiomerically pure G-protein-coupled estrogen receptor agonist, LNS8801, reversed stiffness in ovariectomy mice to a greater degree than the racemic agonist G-1. In summary, ovariectomy and aging induced arterial stiffening via potentially different mechanisms. Aging was associated with inward remodeling, while ovariectomy-induced material stiffness independent of geometry and a loss of the contractile phenotype. CONCLUSIONS: This study enhances our understanding of the impact of estrogen loss on vascular health in a murine model and warrants further studies to examine the ability of LNS8801 to improve vascular health in menopausal women.


Assuntos
Ovariectomia , Receptores Acoplados a Proteínas G , Rigidez Vascular , Animais , Feminino , Camundongos , Envelhecimento/fisiologia , Artérias Carótidas , Estrogênios/farmacologia , Proteínas de Ligação ao GTP , Ovariectomia/efeitos adversos , Análise de Onda de Pulso , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Rigidez Vascular/efeitos dos fármacos , Rigidez Vascular/fisiologia
2.
Res Sq ; 2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37886462

RESUMO

Background: Testosterone plays a vital role in men's health. Lower testosterone level is associated with cardiovascular and cardiometabolic diseases, including inflammation, atherosclerosis, and type 2 diabetes. Testosterone replacement is beneficial or neutral to men's cardiovascular health. Testosterone deficiency is associated with cardiovascular events. Testosterone supplementation to hypogonadal men improves libido, increases muscle strength, and enhances mood. We hypothesized that sex chromosomes (XX and XY) interaction with testosterone plays a role in arterial stiffening. Methods: We used four core genotype male mice to understand the inherent contribution of sex hormones and sex chromosome complement in arterial stiffening. Age-matched mice were either gonadal intact or castrated for eight weeks, followed by an assessment of blood pressure, pulse wave velocity, echocardiography, and ex vivo passive vascular mechanics. Results: Arterial stiffening but not blood pressure was more significant in castrated than testes-intact mice independent of sex chromosome complement. Castrated mice showed a leftward shift in stress-strain curves and carotid wall thinning. Sex chromosome complement (XX) in the absence of testosterone increased collagen deposition in the aorta and Kdm6a gene expression. Conclusion: Testosterone deprivation increases arterial stiffening and vascular wall remodeling. Castration increases Col1α1 in male mice with XX sex chromosome complement. Our study shows decreased aortic contractile genes in castrated mice with XX than XY sex chromosomes.

3.
bioRxiv ; 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37645992

RESUMO

Arterial stiffness is a cardiovascular risk factor and dramatically increases as women transition through menopause. The current study assessed whether a mouse model of menopause increases arterial stiffness in a similar manner to aging, and whether activation of the G protein-coupled estrogen receptor (GPER) could reverse stiffness. Female C57Bl/6J mice were ovariectomized (OVX) at 10 weeks of age or aged to 52 weeks, and some mice were treated with GPER agonists. OVX and aging increased pulse wave velocity to a similar extent independent of changes in blood pressure. Aging increased carotid wall thickness, while OVX increased material stiffness without altering vascular geometry. RNA-Seq analysis revealed that OVX downregulated smooth muscle contractile genes. The enantiomerically pure GPER agonist, LNS8801, reversed stiffness in OVX mice to a greater degree than the racemic agonist G-1. In summary, OVX and aging induced arterial stiffening via potentially different mechanisms. Aging was associated with inward remodeling while OVX induced material stiffness independent of geometry and a loss of the contractile phenotype. This study helps to further our understanding of the impact of menopause on vascular health and identifies LNS8801 as a potential therapy to counteract this detrimental process in women.

4.
J Hum Hypertens ; 37(8): 609-618, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36319856

RESUMO

Cardiovascular disease (CVD) is the leading cause of death globally for men and women. Premenopausal women have a lower incidence of hypertension and other cardiovascular events than men of the same age, but diminished sex differences after menopause implicates 17-beta-estradiol (E2) as a protective agent. The cardioprotective effects of E2 are mediated by nuclear estrogen receptors (ERα and ERß) and a G protein-coupled estrogen receptor (GPER). This review summarizes both established as well as emerging estrogen-mediated mechanisms that underlie sex differences in the vasculature during hypertension and CVD. In addition, remaining knowledge gaps inherent in the association of sex differences and E2 are identified, which may guide future clinical trials and experimental studies in this field.


Assuntos
Doenças Cardiovasculares , Hipertensão , Feminino , Humanos , Masculino , Doenças Cardiovasculares/etiologia , Estrogênios , Receptores de Estrogênio , Estradiol/farmacologia , Hipertensão/tratamento farmacológico , Hipertensão/complicações , Receptores Acoplados a Proteínas G
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...