Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucl Med Biol ; 106-107: 21-28, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34998216

RESUMO

INTRODUCTION: Novel diagnostic and therapeutic options are urgently needed for patients with metastatic castration-resistant prostate cancer (CRPC). PSMA-617 is one of the most promising ligands that bind to prostate specific membrane antigen (PSMA), the cell surface biomarker of CRPC. Of the radiolabeled PSMA ligands developed to date, [68Ga]Ga-PSMA-617 is most commonly used for PSMA positron emission tomography (PET) prior to radioligand therapy (RLT) with [177Lu]Lu-PSMA-617. However, the presence of 68Ga radioactivity (half-life 68 m) in urine at the early PET imaging time point complicates optimization of the therapeutic dose of PSMA-617 labeled with 177Lu (half-life 6.7 d). Thus, PET imaging with the long-lived positron emitter 89Zr (half-life 3.3 d) would be better suited in order to optimize the dose of [177Lu]Lu-PSMA-617 as 89Zr PET allows scans after excretion of the radioactive urine. Until now, PSMA-617 could not be radiolabeled with 89Zr with high radiochemical yield due to poor incorporation of 89Zr into 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA). Here we report a novel method for radiolabeling PSMA-617 with 89Zr and the preliminary results of small-animal PET with [89Zr]Zr-PSMA-617. METHODS: We labeled PSMA-617 with 89Zr in a 1:1 mixture of DMSO and HEPES buffer at 90 °C for 30 min, followed by quality control analysis by HPLC. We then determined the dissociation constant (Kd) and logD values of [89Zr]Zr-PSMA-617. We obtained PET images of [89Zr]Zr-PSMA-617 at 24 h in mice bearing both LNCaP (PSMA-positive) and PC-3 (PSMA-negative) tumors (N = 5). The ex vivo [89Zr]Zr-PSMA-617 biodistribution was then examined separately using tissue samples of LNCaP-bearing mice at 2 h (N = 4) and 24 h (N = 4). RESULTS: [89Zr]Zr-PSMA-617 was prepared with a radiochemical yield of 70 ± 9%. The Kd value was 6.8 ± 3.5 nM. The logD value was -4.05 ± 0.20. PET images showed the highest uptake in LNCaP tumors (maximum standardized uptake value, SUVmax = 0.98 ± 0.32) and low uptake in kidneys (SUVmax = 0.18 ± 0.7) due to the absence of urine radioactivity. CONCLUSION: [89Zr]Zr-PSMA-617 was successfully prepared using DMSO and HEPES buffer. [89Zr]Zr-PSMA-617 visualized PSMA-positive LNCaP tumors in the absence of radioactive urine 24 h p.i. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE: This method of radiolabeling PSMA-617 with 89Zr using DMSO would be suitable for future clinical trials. Prediction of radiation dose by using [89Zr]Zr-PSMA-617 leads to the safe and effective RLT with [177Lu]Lu-PSMA-617.


Assuntos
Dimetil Sulfóxido , Neoplasias da Próstata , Animais , Antígenos de Superfície/metabolismo , Linhagem Celular Tumoral , Dipeptídeos , Glutamato Carboxipeptidase II/metabolismo , Compostos Heterocíclicos com 1 Anel , Humanos , Lutécio , Masculino , Camundongos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia por Emissão de Pósitrons , Antígeno Prostático Específico , Neoplasias da Próstata/patologia , Compostos Radiofarmacêuticos , Distribuição Tecidual
2.
Molecules ; 26(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34443566

RESUMO

(1) Background: Deferoxamine B (DFO) is the most widely used chelator for labeling of zirconium-89 (89Zr) to monoclonal antibody (mAb). Despite the remarkable developments of the clinical 89Zr-immuno-PET, chemical species and stability constants of the Zr-DFO complexes remain controversial. The aim of this study was to re-evaluate their stability constants by identifying species of Zr-DFO complexes and demonstrate that the stability constants can estimate radiochemical yield (RCY) and chelator-to-antibody ratio (CAR). (2) Methods: Zr-DFO species were determined by UV and ESI-MS spectroscopy. Stability constants and speciation of the Zr-DFO complex were redetermined by potentiometric titration. Complexation inhibition of Zr-DFO by residual impurities was investigated by competition titration. (3) Results: Unknown species, ZrHqDFO2, were successfully detected by nano-ESI-Q-MS analysis. We revealed that a dominant specie under radiolabeling condition (pH 7) was ZrHDFO, and its stability constant (logß111) was 49.1 ± 0.3. Competition titration revealed that residual oxalate inhibits Zr-DFO complex formation. RCYs in different oxalate concentration (0.1 and 0.04 mol/L) were estimated to be 86% and >99%, which was in good agreement with reported results (87%, 97%). (4) Conclusion: This study succeeded in obtaining accurate stability constants of Zr-DFO complexes and estimating RCY and CAR from accurate stability constants established in this study.


Assuntos
Anticorpos Monoclonais/química , Quelantes/química , Desferroxamina/química , Radioisótopos/química , Zircônio/química , Linhagem Celular Tumoral , Humanos , Marcação por Isótopo , Tomografia por Emissão de Pósitrons , Radioquímica
3.
Sci Rep ; 5: 14741, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26443381

RESUMO

The photovoltaic (PV) effect in polar materials offers great potential for light-energy conversion that generates a voltage beyond the bandgap limit of present semiconductor-based solar cells. Ferroelectrics have received renewed attention because of the ability to deliver a high voltage in the presence of ferroelastic domain walls (DWs). In recent years, there has been considerable debate over the impact of the DWs on the PV effects, owing to lack of information on the bulk PV tensor of host ferroelectrics. In this article, we provide the first direct evidence of an unusually large PV response induced by ferroelastic DWs-termed 'DW'-PV effect. The precise estimation of the bulk PV tensor in single crystals of barium titanate enables us to quantify the giant PV effect driven by 90° DWs. We show that the DW-PV effect arises from an effective electric field consisting of a potential step and a local PV component in the 90° DW region. This work offers a starting point for further investigation into the DW-PV effect of alternative systems and opens a reliable route for enhancing the PV properties in ferroelectrics based on the engineering of domain structures in either bulk or thin-film form.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...