Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Transplant ; 33: 9636897241251621, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38756050

RESUMO

Subcutaneous islet transplantation is a promising treatment for severe diabetes; however, poor engraftment hinders its prevalence. We previously revealed that a gelatin hydrogel nonwoven fabric (GHNF) markedly improved subcutaneous islet engraftment. We herein investigated whether the addition of adipose tissue-derived stem cells (ADSCs) to GHNF affected the outcome. A silicone spacer sandwiched between two GHNFs with (AG group) or without (GHNF group) ADSCs, or a silicone spacer alone (Silicone group) was implanted into the subcutaneous space of healthy mice at 6 weeks before transplantation, then diabetes was induced 7 days before transplantation. Syngeneic islets were transplanted into the pretreated space. Intraportal transplantation (IPO group) was also performed to compare the transplant efficiency. Blood glucose, intraperitoneal glucose tolerance, immunohistochemistry, and inflammatory mediators were evaluated. The results in the subcutaneous transplantation were compared using the Silicone group as a control. The results of the IPO group were also compared with those of the AG group. The AG group showed significantly better blood glucose changes than the Silicone and the IPO groups. The cure rate of AG group (72.7%) was the highest among the groups (GHNF; 40.0%, IPO; 40.0%, Silicone; 0%). The number of vWF-positive vessels in the subcutaneous space of the AG group was significantly higher than that in other groups before transplantation (P < 0.01). Lectin angiography also showed that the same results (P < 0.05). According to the results of the ADSCs tracing, ADSCs did not exist at the transplant site (6 weeks after implantation). The positive rates for laminin and collagen III constructed around the transplanted islets did not differ among groups. Inflammatory mediators were higher in the Silicone group, followed by the AG and GHNF groups. Pretreatment using bioabsorbable scaffolds combined with ADSCs enhanced neovascularization in subcutaneous space, and subcutaneous islet transplantation using GHNF with ADSCs was superior to intraportal islet transplantation.


Assuntos
Tecido Adiposo , Gelatina , Hidrogéis , Transplante das Ilhotas Pancreáticas , Animais , Transplante das Ilhotas Pancreáticas/métodos , Tecido Adiposo/citologia , Gelatina/química , Camundongos , Hidrogéis/química , Masculino , Diabetes Mellitus Experimental/terapia , Células-Tronco/citologia , Células-Tronco/metabolismo , Ilhotas Pancreáticas/citologia , Glicemia/metabolismo , Camundongos Endogâmicos C57BL
2.
Cells ; 13(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38534342

RESUMO

Subcutaneous space has been considered an attractive site for islet graft transplantation; however, the oxygen tension and vascularization are insufficient for islet graft survival. We investigated whether subcutaneous pre-implantation of a recombinant peptide (RCP) device with adipose tissue-derived stem cells (ADSCs) enhanced subcutaneous islet engraftment. RCP devices with/without syngeneic ADSCs were pre-implanted into the subcutaneous space of C57BL/6 mice. Syngeneic islets (300 or 120 islet equivalents (IEQs)) were transplanted into the pre-treated space after diabetes induction using streptozotocin. The cure rates of groups in which RCP devices were implanted four weeks before transplantation were significantly better than the intraportal transplantation group when 300 IEQs of islets were transplanted (p < 0.01). The blood glucose changes in the RCP+ADSCs-4w group was significantly ameliorated in comparison to the RCP-4w group when 120 IEQs of islets were transplanted (p < 0.01). Immunohistochemical analyses showed the collagen III expression in the islet capsule of the RCP+ADSCs-4w group was significantly enhanced in comparison to the RCP-4w and RCP+ADSCs-d10 groups (p < 0.01, p < 0.01). In addition, the number of von Willebrand factor-positive vessels within islets in the RCP+ADSCs-4w group was significantly higher than the RCP-4w group. These results suggest that using ADSCs in combination with an RCP device could enhance the restoration of the extracellular matrices, induce more efficient prevascularization within islets, and improve the graft function.


Assuntos
Diabetes Mellitus Experimental , Camundongos , Animais , Camundongos Endogâmicos C57BL , Tecido Adiposo , Células-Tronco , Peptídeos
3.
Am J Pathol ; 193(12): 1988-2000, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37741451

RESUMO

Dual-specificity phosphatase 6 (DUSP6) is a specific phosphatase for mitogen-activated protein kinase (MAPK). This study used a high-fat diet (HFD)-induced murine nonalcoholic fatty liver disease model to investigate the role of DUSP6 in this disease. Wild-type (WT) and Dusp6-haploinsufficiency mice developed severe obesity and liver pathology consistent with nonalcoholic fatty liver disease when exposed to HFD. In contrast, Dusp6-knockout (KO) mice completely eliminated these phenotypes. Furthermore, primary hepatocytes isolated from WT mice exposed to palmitic and oleic acids exhibited abundant intracellular lipid accumulation, whereas hepatocytes from Dusp6-KO mice showed minimal lipid accumulation. Transcriptome analysis revealed significant down-regulation of genes encoding cytochrome P450 4A (CYP4A), known to promote ω-hydroxylation of fatty acids and hepatic steatosis, in Dusp6-KO hepatocytes compared with that in WT hepatocytes. Diminished CYP4A expression was observed in the liver of Dusp6-KO mice compared with WT and Dusp6-haploinsufficiency mice. Knockdown of DUSP6 in HepG2, a human liver-lineage cell line, also promoted a reduction of lipid accumulation, down-regulation of CYP4A, and up-regulation of phosphorylated/activated MAPK. Furthermore, inhibition of MAPK activity promoted lipid accumulation in DUSP6-knockdown HepG2 cells without affecting CYP4A expression, indicating that CYP4A expression is independent of MAPK activation. These findings highlight the significant role of DUSP6 in HFD-induced steatohepatitis through two distinct pathways involving CYP4A and MAPK.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Camundongos , Citocromo P-450 CYP4A/metabolismo , Dieta Hiperlipídica , Ácidos Graxos/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia
4.
Cell Transplant ; 32: 9636897231186063, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37466120

RESUMO

Subcutaneous islet transplantation is a promising treatment for severe diabetes; however, poor engraftment hinders its prevalence. We previously revealed that a gelatin hydrogel nonwoven fabric (GHNF) markedly improved subcutaneous islet engraftment in comparison with intraportal islet transplantation. We herein investigated whether the duration of pretreatment using GHNF affected the outcome of subcutaneous islet transplantation. A silicone spacer with GHNF was implanted into the subcutaneous space of healthy mice at 2, 4, 6, or 8 weeks before transplantation, and then diabetes was induced 7 days before transplantation. Syngeneic islets were transplanted into the pretreated space. Blood glucose, intraperitoneal glucose tolerance, immunohistochemistry, inflammatory mediators, and gene expression were evaluated. The 6-week group showed significantly better blood glucose changes than the other groups (P < 0.05). The cure rate of the 6-week group (60.0%) was the highest among the groups (2-week = 0%, 4-week = 50.0%, 8-week = 15.4%). The number of von Willebrand factor (vWF)-positive vessels in the 6-week group was significantly higher than in the other groups at pre-islet and post-islet transplantation (P < 0.01 [vs 2-and 4-week groups] and P < 0.05 [vs all other groups], respectively). Notably, this beneficial effect was also observed when GHNF was implanted into diabetic mice injected with streptozotocin 7 days before GHNF implantation. The positive rates for laminin, collagen III, and collagen IV increased as the duration of pretreatment became longer and were significantly higher in the 8-week group (P < 0.01). Inflammatory mediators, including interleukin (IL)-1b, granulocyte colony-stimulating factor (G-CSF), and interferon (IFN)-γ, were gradually downregulated according to the duration of GHNF pretreatment and re-elevated in the 8-week group. Taken together, the duration of GHNF pretreatment apparently had an impact on the outcomes of subcutaneous islet transplantation, and 6 weeks appeared to be the ideal duration. Islet graft revascularization, extracellular matrix compensation of the islet capsule, and the inflammatory status at the subcutaneous space would be crucial factors for successful subcutaneous islet transplantation.


Assuntos
Diabetes Mellitus Experimental , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Camundongos , Animais , Glicemia/metabolismo , Gelatina/farmacologia , Diabetes Mellitus Experimental/terapia , Hidrogéis/farmacologia , Colágeno , Mediadores da Inflamação , Ilhotas Pancreáticas/metabolismo , Sobrevivência de Enxerto
5.
Sci Rep ; 13(1): 11968, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37488155

RESUMO

Subcutaneous islet transplantation is a promising treatment for severe diabetes; however, poor engraftment hinders its prevalence. We previously reported that a recombinant peptide (RCP) enhances subcutaneous islet engraftment. However, it is impractical for clinical use because RCP must be removed when transplanting islets. We herein investigated whether a novel bioabsorbable gelatin hydrogel nonwoven fabric (GHNF) could improve subcutaneous islet engraftment. A silicon spacer with or without GHNF was implanted into the subcutaneous space of diabetic mice. Syngeneic islets were transplanted into the pretreated space or intraportally (Ipo group). Blood glucose, intraperitoneal glucose tolerance, immunohistochemistry, CT angiography and gene expression were evaluated. The cure rate and glucose tolerance of the GHNF group were significantly better than in the control and Ipo groups (p < 0.01, p < 0.05, respectively). In the GHNF group, a limited increase of vWF-positive vessels was detected in the islet capsule, whereas laminin (p < 0.05), collagen III and IV were considerably enhanced. TaqMan arrays revealed a significant upregulation of 19 target genes (including insulin-like growth factor-2) in the pretreated space. GHNF markedly improved the subcutaneous islet transplantation outcomes, likely due to ECM compensation and protection of islet function by various growth factors, rather than enhanced neovascularization.


Assuntos
Diabetes Mellitus Experimental , Transplante das Ilhotas Pancreáticas , Animais , Camundongos , Gelatina , Hidrogéis , Glicemia
6.
J Clin Med ; 12(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37297929

RESUMO

Pancreatic islet transplantation is a promising therapy for type 1 diabetes. Islet transplantation is clinically performed through intra-portal infusion, which is associated with several drawbacks, including poor engraftment. The histological resemblance between the submandibular gland and the pancreas renders it an attractive alternative site for islet transplantation. In this study, we refined the technique of islet transplantation into the submandibular gland to achieve good morphological features. Then, we transplanted 2600 islet equivalents into the submandibular glands of diabetic Lewis rats. Intra-portal islet transplantation was performed in diabetic rats as a control. Blood glucose levels were followed for 31 days, and an intravenous glucose tolerance test was performed. Immunohistochemistry was used to demonstrate the morphology of transplanted islets. Follow-up after transplantation showed that diabetes was cured in 2/12 rats in the submandibular group in comparison to 4/6 in the control group. The intravenous glucose tolerance test results of the submandibular and intra-portal groups were comparable. Immunohistochemistry showed large islet masses in the submandibular gland in all examined specimens with positive insulin staining. Our results show that submandibular gland tissue can support the islet function and engraftment but with considerable variability. Good morphological features were achieved using our refined technique. However, islet transplantation into rat submandibular glands did not demonstrate a clear advantage over conventional intra-portal transplantation.

7.
Transplant Proc ; 55(4): 1012-1015, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37100736

RESUMO

BACKGROUND: Hepatocyte transplantation has been reported to be useful for metabolic diseases and acute liver failure. However, the shortage of donors limits its widespread use. The use of livers from donors after circulatory death, which are currently unavailable for liver transplantation, may alleviate donor shortage. In this study, we investigated the effects of mechanical perfusion on cardiac arrest hepatocytes in a rat model using cardiac arrest donor livers, and we evaluated the function of cardiac arrest hepatocytes. METHODS: F344 rat hepatocytes isolated from livers removed during cardiac pulsation were compared with those isolated from livers removed after 30 minutes of warm ischemia after cardiac arrest. We then compared hepatocytes isolated from livers removed after 30 minutes of warm ischemia with those isolated after 30 minutes of mechanical perfusion before isolation. The yield per liver weight, ammonia removal capacity, and adenosine diphosphate/adenosine triphosphate ratio were evaluated. RESULTS: Thirty minutes of warm inhibition reduced hepatocyte yield but did not alter ammonia removal capacity and energy status. Mechanical perfusion increased hepatocyte yield and improved the adenosine diphosphate/adenosine triphosphate ratio after 30 minutes of warm inhibition. CONCLUSION: Thirty minutes of warm ischemic time may decrease isolated hepatocyte yield without degrading their function. If increased yields are obtained, livers from donors dying of cardiac arrest could be used for hepatocyte transplantation. The results also suggest that mechanical perfusion may positively affect the energy status of hepatocytes.


Assuntos
Amônia , Parada Cardíaca , Ratos , Animais , Ratos Endogâmicos F344 , Hepatócitos/fisiologia , Fígado/metabolismo , Perfusão/métodos , Isquemia Quente/efeitos adversos , Trifosfato de Adenosina/metabolismo , Difosfato de Adenosina/metabolismo , Preservação de Órgãos/métodos
8.
Molecules ; 28(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36771099

RESUMO

Photodynamic therapy (PDT), a noninvasive method for cancer therapy, involves the generation of reactive oxygen species (ROS) by the photochemical excitation of photosensitizers (PSs) to induce cell death in cancer cells. A variety of PS including porphyrin derivatives and metal complexes such as iridium (Ir) complexes have been reported. In clinical trials, red-near infrared (NIR) light (650-900 nm) is preferred for the excitation of PSs due to its deeper penetration into tissues compared with visible light (400-500 nm). To overcome this limitation, we established a PDT system that uses cyclometalated iridium(III) (Ir(III)) complexes that are excited with blue light in the wireless power transmission (WPT) system. To achieve this, we developed a light-emitting diode (LED) light device equipped with a receiver coil that receives electricity from the transmitter coil through magnetic resonance coupling. The LEDs in the receiving device use blue light (470 nm) to irradiate a given Ir(III) complex and excite triplet oxygen (3O2) to singlet oxygen (1O2) which induces cell death in HeLa S3 cells (human cervical carcinoma cells). The results obtained in this study suggest that WPT-based PDT represents a potentially new method for the treatment of tumors by a non-battery LED, which are otherwise difficult to treat by previous PDT systems.


Assuntos
Complexos de Coordenação , Neoplasias , Fotoquimioterapia , Humanos , Irídio/farmacologia , Irídio/química , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes/química , Morte Celular , Complexos de Coordenação/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia
9.
Cells ; 13(1)2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38201255

RESUMO

Although subcutaneous islet transplantation has many advantages, the subcutaneous space is poor in vessels and transplant efficiency is still low in animal models, except in mice. Subcutaneous islet transplantation using a two-step approach has been proposed, in which a favorable cavity is first prepared using various materials, followed by islet transplantation into the preformed cavity. We previously reported the efficacy of pretreatment using gelatin hydrogel nonwoven fabric (GHNF), and the length of the pretreatment period influenced the results in a mouse model. We investigated whether the preimplantation of GHNF could improve the subcutaneous islet transplantation outcomes in a rat model. GHNF sheets sandwiching a silicone spacer (GHNF group) and silicone spacers without GHNF sheets (control group) were implanted into the subcutaneous space of recipients three weeks before islet transplantation, and diabetes was induced seven days before islet transplantation. Syngeneic islets were transplanted into the space where the silicone spacer was removed. Blood glucose levels, glucose tolerance, immunohistochemistry, and neovascularization were evaluated. The GHNF group showed significantly better blood glucose changes than the control group (p < 0.01). The cure rate was significantly higher in the GHNF group (p < 0.05). The number of vWF-positive vessels was significantly higher in the GHNF group (p < 0.01), and lectin angiography showed the same tendency (p < 0.05). The expression of laminin and collagen III around the transplanted islets was also higher in the GHNF group (p < 0.01). GHNF pretreatment was effective in a rat model, and the main mechanisms might be neovascularization and compensation of the extracellular matrices.


Assuntos
Gelatina , Hidrogéis , Ratos , Camundongos , Animais , Gelatina/farmacologia , Hidrogéis/farmacologia , Glicemia , Modelos Animais de Doenças , Neovascularização Patológica , Silicones/farmacologia
10.
Sci Rep ; 12(1): 14731, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36042259

RESUMO

Subcutaneous tissue is a promising site for islet transplantation, but poor engraftment, due to hypoxia and low vascularity, hinders its prevalence. However, oxygen partial pressure (pO2) of the subcutaneous space (SC) and other sites were reported to be equivalent in several previous reports. This contradiction may be based on accidental puncture to the indwelling micro-vessels in target tissues. We therefore developed a novel optical sensor system, instead of a conventional Clark-type needle probe, for measuring tissue pO2 and found that pO2 of the SC was extremely low in comparison to other sites. To verify the utility of this method, we transplanted syngeneic rat islets subcutaneously into diabetic recipients under several oxygenation conditions using an oxygen delivery device, then performed pO2 measurement, glucose tolerance, and immunohistochemistry. The optical sensor system was validated by correlating the pO2 values with the transplanted islet function. Interestingly, this novel technique revealed that islet viability estimated by ATP/DNA assay reduced to less than 75% by hypoxic condition at the SC, indicating that islet engraftment may substantially improve if the pO2 levels reach those of the renal subcapsular space. Further refinements for a hypoxic condition using the present technique may contribute to improving the efficiency of subcutaneous islet transplantation.


Assuntos
Diabetes Mellitus Experimental , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Animais , Glicemia , Diabetes Mellitus Experimental/terapia , Hipóxia , Transplante das Ilhotas Pancreáticas/métodos , Oxigênio , Ratos , Tela Subcutânea
12.
Transplantation ; 106(10): 1963-1973, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35404871

RESUMO

BACKGROUND: Hepatocyte transplantation is expected to be an alternative therapy to liver transplantation; however, poor engraftment is a severe obstacle to be overcome. The adipose tissue-derived stem cells (ADSCs) are known to improve engraftment of transplanted pancreatic islets, which have many similarities to the hepatocytes. Therefore, we examined the effects and underlying mechanisms of ADSC cotransplantation on hepatocyte engraftment. METHODS: Hepatocytes and ADSCs were cotransplanted into the renal subcapsular space and livers of syngeneic analbuminemic rats, and the serum albumin level was quantified to evaluate engraftment. Immunohistochemical staining and fluorescent staining to trace transplanted cells in the liver were also performed. To investigate the mechanisms, cocultured supernatants were analyzed by a multiplex assay and inhibition test using neutralizing antibodies for target factors. RESULTS: Hepatocyte engraftment at both transplant sites was significantly improved by ADSC cotransplantation ( P < 0.001, P < 0.001). In the renal subcapsular model, close proximity between hepatocytes and ADSCs was necessary to exert this effect. Unexpectedly, ≈50% of transplanted hepatocytes were attached by ADSCs in the liver. In an in vitro study, the hepatocyte function was significantly improved by ADSC coculture supernatant ( P < 0.001). The multiplex assay and inhibition test demonstrated that hepatocyte growth factor, vascular endothelial growth factor, and interleukin-6 may be key factors for the abovementioned effects of ADSCs. CONCLUSIONS: The present study revealed that ADSC cotransplantation can improve the engraftment of transplanted hepatocytes. This effect may be based on crucial factors, such as hepatocyte growth factor, vascular endothelial growth factor, and interleukin-6, which are secreted by ADSCs.


Assuntos
Fator de Crescimento de Hepatócito , Fator A de Crescimento do Endotélio Vascular , Tecido Adiposo , Animais , Anticorpos Neutralizantes , Fator de Crescimento de Hepatócito/metabolismo , Hepatócitos/metabolismo , Interleucina-6 , Ratos , Albumina Sérica , Células-Tronco/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
13.
Sci Rep ; 12(1): 4241, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35273344

RESUMO

Clinical hepatocyte transplantation (HTx) is only performed without general anesthesia, while inhalation anesthetics are usually used in animal experiments. We hypothesized that isoflurane may be a possible reason for the discrepancy between the results of animal experiments and the clinical outcomes of HTx. Syngeneic rat hepatocytes (1.0 × 107) were transplanted to analbuminemic rats with (ISO group) and without (AW group) isoflurane. The serum albumin, AST, ALT, LDH levels and several inflammatory mediators were analyzed. Immunohistochemical staining and ex vivo imaging were also performed. The serum albumin levels of the ISO group were significantly higher in comparison to the AW group (p < 0.05). The serum AST, ALT, LDH levels of the ISO group were significantly suppressed in comparison to the AW group (p < 0.0001, respectively). The serum IL-1ß, IL-10, IL-18, MCP-1, RNTES, Fractalkine and LIX levels were significantly suppressed in the ISO group. The ischemic regions of the recipient livers in the ISO group tended to be smaller than the AW group; however, the distribution of transplanted hepatocytes in the liver parenchyma was comparable between the two groups. Isoflurane may at least in part be a reason for the discrepancy between the results of animal experiments and the clinical outcomes of HTx.


Assuntos
Anestésicos Inalatórios , Isoflurano , Transplante de Fígado , Anestésicos Inalatórios/farmacologia , Animais , Hepatócitos/transplante , Isoflurano/farmacologia , Fígado , Transplante de Fígado/métodos , Ratos , Albumina Sérica
14.
Transplantation ; 106(5): 963-972, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34241985

RESUMO

BACKGROUND: The current standard immunosuppressive regimens, calcineurin inhibitors, have diabetogenic and anti-vascularization effects on islet grafts. KRP-203, a sphingosine-1-phosphate functional antagonist, exerts its immunomodulatory function through lymphocyte sequestration. However, the effect of this antagonist on islets is unclear. We examined the effect of KRP-203 on the islet function and vascularization and sought a calcineurin-free regimen for islet allotransplantation. METHODS: KRP-203 was administered for 14 d to mice, then diabetogenic effect was evaluated by blood glucose levels and a glucose tolerance test. Static glucose stimulation, the breathing index, and insulin/DNA were examined using isolated islets. Islet neovascularization was evaluated using a multiphoton laser scanning microscope. After islet allotransplantation with either KRP-203 alone, sirolimus alone, or both in combination, the graft survival was evaluated by blood glucose levels and immunohistochemical analyses. A mixed lymphocyte reaction was also performed to investigate the immunologic characteristics of KRP-203 and sirolimus. RESULTS: No significant differences in the blood glucose levels or glucose tolerance were observed between the control and KRP-203 groups. Functional assays after islet isolation were also comparable. The multiphoton laser scanning microscope showed no inhibitory effect of KRP-203 on islet neovascularization. Although allogeneic rejection was effectively inhibited by KRP-203 monotherapy (44%), combination therapy prevented rejection in most transplanted mice (83%). CONCLUSIONS: KRP-203 is a desirable immunomodulator for islet transplantation because of the preservation of the endocrine function and lack of interference with islet neovascularization. The combination of KRP-203 with low-dose sirolimus may be promising as a calcineurin-free regimen for islet allotransplantation.


Assuntos
Glicemia , Diabetes Mellitus , Animais , Glucose/farmacologia , Imunossupressores/farmacologia , Camundongos , Sirolimo/farmacologia , Compostos de Sulfidrila
15.
Front Bioeng Biotechnol ; 9: 756755, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34746108

RESUMO

Introduction: Whole-organ decellularization is an attractive approach for three-dimensional (3D) organ engineering. However, progress with this approach is hindered by intra-vascular blood coagulation that occurs after in vivo implantation of the re-cellularized scaffold, resulting in a short-term graft survival. In this study, we explored an alternative approach for 3D organ engineering through an axial pre-vascularization approach and examined its suitability for pancreatic islet transplantation. Methods: Whole livers from male Lewis rats were decellularized through sequential arterial perfusion of detergents. The decellularized liver scaffold was implanted into Lewis rats, and an arteriovenous bundle was passed through the scaffold. At the time of implantation, fresh bone marrow preparation (BM; n = 3), adipose-derived stem cells (ADSCs; n = 4), or HBSS (n = 4) was injected into the scaffold through the portal vein. After 5 weeks, around 2,600 islet equivalents (IEQs) were injected through the portal vein of the scaffold. The recipient rats were rendered diabetic by the injection of 65 mg/kg STZ intravenously 1 week before islet transplantation and were followed up after transplantation by measuring the blood glucose and body weight for 30 days. Intravenous glucose tolerance test was performed in the cured animals, and samples were collected for immunohistochemical (IHC) analyses. Micro-computed tomography (CT) images were obtained from one rat in each group for representation. Results: Two rats in the BM group and one in the ADSC group showed normalization of blood glucose levels, while one rat from each group showed partial correction of blood glucose levels. In contrast, no rats were cured in the HBSS group. Micro-CT showed evidence of sprouting from the arteriovenous bundle inside the scaffold. IHC analyses showed insulin-positive cells in all three groups. The number of von-Willebrand factor-positive cells in the islet region was higher in the BM and ADSC groups than in the HBSS group. The number of 5-bromo-2'-deoxyuridine-positive cells was significantly lower in the BM group than in the other two groups. Conclusions: Despite the limited numbers, the study showed the promising potential of the pre-vascularized whole-organ scaffold as a novel approach for islet transplantation. Both BM- and ADSCs-seeded scaffolds were superior to the acellular scaffold.

16.
Cell Transplant ; 30: 9636897211040012, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34525872

RESUMO

Intraportal injection is regarded as the current standard procedure of hepatocyte transplantation (HTx). In islet transplantation, which shares many aspects with HTx, recent studies have clarified that instant blood-mediated inflammatory reaction (IBMIR), characterized by strong innate immune responses, can cause poor engraftment, so other transplant sites to avoid such a reaction have been established. Although IBMIR was reported to occur in HTx, few reports have evaluated alternative transplant sites for HTx. In this study, we sought to determine the optimum transplant site for HTx. Rat hepatocytes (1.0 × 107) were transplanted at the 9 transplant sites (intraportal (IPO), intrasplenic (IS), liver parenchyma, subcutaneous, intraperitoneal, renal subcapsular, muscle, inguinal subcutaneous white adipose tissue, and omentum) of analbuminemic rats. The serum albumin levels, immunohistochemical staining (albumin, TUNEL, and BrdU), and in vivo imaging of the grafts were evaluated. The serum albumin levels of the IPO group were significantly higher than those of the other groups (p < .0001). The BrdU-positive hepatocyte ratio of liver in the IS group (0.9% ± 0.2%) was comparable to that of the IPO group (0.9% ± 0.3%) and tended to be higher than that of the spleen in the IS group (0.5% ± 0.1%, p = .16). Considering the in vivo imaging evaluation and the influence of splenectomy, the graft function in the IS group may be almost entirely achieved by hepatocytes that have migrated to the liver. The present study clearly showed that the intraportal injection procedure is more efficient than other procedures for performing HTx.


Assuntos
Hepatócitos/transplante , Transplante das Ilhotas Pancreáticas/métodos , Baço/fisiopatologia , Animais , Modelos Animais de Doenças , Masculino , Ratos
17.
PLoS One ; 16(8): e0255733, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34388180

RESUMO

We previously reported that dye was effective to prevent the leakage of enzyme solutions from pancreatic glands during an islet isolation procedure. However, the dye used for islet isolation has not yet been optimized. In this study, we focused on pyoktanin blue (PB), diagnogreen (DG), and indigo carmine (IC) as potential candidates among clinically established dyes. A serial dilution assay was performed to determine minimal effective concentrations of each dye for detecting damaged pancreatic tissues. According to the outcome of serial dilution assays, double minimum effective concentrations of each dye were used for in vitro toxicity assays on islets and used in the isolation procedure to investigate whether they adversely affect islet isolation efficiency. The evaluations included islet yield, ADP/ATP, ATP/DNA, glucose stimulation test, and insulin/DNA assays. Islet viability cultured with PB contained medium was significantly lower than the other dyes. DG and IC appeared to be non-toxic to the islets. In isolation experiments, the islet yield in the DG group was considerably lower than that in the Control group, suggesting that DG might inhibit enzyme activity. The present study demonstrates that IC could be a promising candidate for an effective dye to detect damaged pancreatic tissues without affecting the enzyme activity and islet quality.


Assuntos
Corantes/farmacologia , Índigo Carmim/farmacologia , Ilhotas Pancreáticas/patologia , Pâncreas/efeitos dos fármacos , Fenóis/farmacologia , Pirróis/farmacologia , Difosfato de Adenosina/química , Trifosfato de Adenosina/química , Animais , DNA/efeitos dos fármacos , Glucose/química , Humanos , Insulina/química , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/ultraestrutura , Pâncreas/patologia , Pâncreas/ultraestrutura , Suínos
18.
J Clin Med ; 10(4)2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673132

RESUMO

In the current clinical islet transplantation, intraportal transplantation is regarded as the gold-standard procedure. However, in this procedure, 50 to 70% of the transplanted islets are immediately damaged due to a strong innate immune response based on islet-blood contact. We investigated the transplant efficiency of a novel method of liver surface transplantation using a syngeneic keratinocyte sheet to avoid islet-blood contact. To examine the influence of the keratinocyte sheet, substantial amounts of syngeneic islets (8 IEQs/g) were transplanted on the liver surface of diabetic rats, while marginal amounts of islets (4 IEQs/g) were transplanted via intraportal transplantation to compare the transplant efficiency. Blood glucose, intraperitoneal glucose tolerance, immunohistochemistry, and in vivo imaging findings of the cell sheet were evaluated. The study showed that islet transplantation to the liver surface immediately followed by a syngeneic keratinocyte sheet covering was effective for curing diabetic rats, while no rats were cured in the group without the cell sheet. Notably, islet grafts transplanted via this approach appeared to penetrate into the liver parenchyma. However, the transplant efficiency did not reach that of intraportal transplantation. Further refinements of this approach by introducing mesothelial or fibroblast cell sheets in combination with a preferable scaffold for islet grafts may help to improve the transplant efficiency.

19.
J Tissue Eng Regen Med ; 15(4): 361-374, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33484496

RESUMO

Because of the fragility of isolated hepatocytes, extremely poor engraftment of transplanted hepatocytes remains a severe issue in hepatocyte transplantation. Therefore, improving hepatocyte engraftment is necessary to establish hepatocyte transplantation as a standard therapy. Since the pancreatic islets are known to have favorable autocrine effects, we hypothesized that the transplanted islets might influence not only the islets but also the nearby hepatocytes, subsequently promoting engraftment. We evaluated the effects of islet co-transplantation using an analbuminemic rat model (in vivo model). Furthermore, we established a mimicking in vitro model to investigate the underlying mechanisms. In an in vivo model, the hepatocyte engraftment was significantly improved only when the islets were co-transplanted to the nearby hepatocytes (p < 0.001). Moreover, the transplanted hepatocytes appeared to penetrate the renal parenchyma together with the co-transplanted islets. In an in vitro model, the viability of cultured hepatocytes was also improved by coculture with pancreatic islets. Of particular interest, the coculture supernatant alone could also exert beneficial effects comparable to islet coculture. Although insulin, VEGF, and GLP-1 were selected as candidate crucial factors using the Bio-Plex system, beneficial effects were partially counteracted by anti-insulin receptor antibodies. In conclusion, this study demonstrated that islet co-transplantation improves hepatocyte engraftment, most likely due to continuously secreted crucial factors, such as insulin, in combination with providing favorable circumstances for hepatocyte engraftment. Further refinements of this approach, especially regarding substitutes for islets, could be a promising strategy for improving the outcomes of hepatocyte transplantation.


Assuntos
Hepatócitos/transplante , Transplante das Ilhotas Pancreáticas , Animais , Sobrevivência Celular , Exossomos/metabolismo , Hepatócitos/citologia , Masculino , Modelos Biológicos , Ratos Endogâmicos F344 , Albumina Sérica/metabolismo
20.
PLoS One ; 14(5): e0216136, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31075114

RESUMO

BACKGROUND: Optimizing the collagenase G (ColG):collagenase H (ColH) ratio is a key strategy for achieving tailored donor-tissue specific islet isolation. Collagen V (Col V) and collagen III (Col III) are crucial target matrices of ColG and ColH, respectively. We herein investigated the relevance between the expression of target matrices in pancreatic tissues and influence of ColG:ColH ratio on islet isolation outcome. METHODS: Islet isolation was performed in Lewis and SD rats using different ColG:ColH ratios (5:1, 1:1 and 1:5; n = 7/group). The composition of Col III and Col V was examined using immunohistochemical staining, real-time polymerase chain reaction (PCR), Western blotting and mass spectrometry. Chain types in collagen I (Col I) were also assessed using mass spectrometry. RESULTS: No beneficial effects were observed by increasing the ColG amount, irrespective of the rat strain. In contrast, the islet yield in Lewis rats was considerably increased by high amounts of ColH but decreased in SD rats, suggesting that Lewis pancreas contains more Col III than SD pancreas. Neither immunohistochemical nor real-time PCR showed correlation with isolation outcome. However, Western blotting revealed that Lewis contained considerably higher amount of Col III than SD (p = 0.10). Likewise, Col-I(α1)/Col-III(α1) and Col-I(α2)/Col-III(α1) were significantly lower in Lewis than in SD rats (p = 0.007, respectively). Furthermore, the isolation outcome was considerably correlated with the composition of homotrimeric Col I. CONCLUSIONS: The Col III expression and the composition of homotrimeric Col I in pancreatic tissues determined using mass analyses appeared useful for optimizing the ColG:ColH ratio in islet isolation.


Assuntos
Ilhotas Pancreáticas/citologia , Animais , Colágeno/metabolismo , Colagenases/metabolismo , Ilhotas Pancreáticas/metabolismo , Transplante das Ilhotas Pancreáticas/métodos , Ratos , Ratos Endogâmicos Lew , Ratos Sprague-Dawley , Doadores de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...