Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Ginseng Res ; 38(1): 52-8, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24558311

RESUMO

To determine whether Fourier transform (FT)-IR spectral analysis combined with multivariate analysis of whole-cell extracts from ginseng leaves can be applied as a high-throughput discrimination system of cultivation ages and cultivars, a total of total 480 leaf samples belonging to 12 categories corresponding to four different cultivars (Yunpung, Kumpung, Chunpung, and an open-pollinated variety) and three different cultivation ages (1 yr, 2 yr, and 3 yr) were subjected to FT-IR. The spectral data were analyzed by principal component analysis and partial least squares-discriminant analysis. A dendrogram based on hierarchical clustering analysis of the FT-IR spectral data on ginseng leaves showed that leaf samples were initially segregated into three groups in a cultivation age-dependent manner. Then, within the same cultivation age group, leaf samples were clustered into four subgroups in a cultivar-dependent manner. The overall prediction accuracy for discrimination of cultivars and cultivation ages was 94.8% in a cross-validation test. These results clearly show that the FT-IR spectra combined with multivariate analysis from ginseng leaves can be applied as an alternative tool for discriminating of ginseng cultivars and cultivation ages. Therefore, we suggest that this result could be used as a rapid and reliable F1 hybrid seed-screening tool for accelerating the conventional breeding of ginseng.

2.
Plant Cell Rep ; 23(8): 557-66, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15538577

RESUMO

Methyl jasmonate (MeJA) treatment increases the levels of plant secondary metabolites, including ginsenosides, which are considered to be the main active compounds in ginseng (Panax ginseng C.A. Meyer). To create a ginseng gene resource that contains the genes involved in the biosynthesis of secondary metabolites, including ginsenosides, we generated 3,134 expression sequence tags (ESTs) from MeJA-treated ginseng hairy roots. These ESTs assembled into 370 clusters and 1,680 singletons. Genes yielding highly abundant transcripts were those encoding proteins involved in fatty acid desaturation, the defense response, and the biosynthesis of secondary metabolites. Analysis of the latter group revealed a number of genes that may be involved in the biosynthesis of ginsenosides, namely, oxidosqualene cyclase (OSC), cytochrome P450, and glycosyltransferase. A novel OSC gene was also identified by this analysis. RNA gel blot analysis confirmed that transcription of this OSC gene, along with squalene synthase (SS) and squalene epoxidase (SE) gene transcription, is increased by MeJA treatment. This ginseng EST data set will also provide important information on the genes that are involved in the biosynthesis of other secondary metabolites and the genes that are responsive to MeJA treatment.


Assuntos
Acetatos/farmacologia , Ciclopentanos/farmacologia , Genes de Plantas , Ginsenosídeos/biossíntese , Panax/genética , Raízes de Plantas/genética , Transcrição Gênica , Sequência de Bases , DNA de Plantas/genética , Genes de Plantas/efeitos dos fármacos , Oxilipinas , Panax/efeitos dos fármacos , Proteínas de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , RNA de Plantas/efeitos dos fármacos , RNA de Plantas/genética
3.
Phytochemistry ; 65(20): 2751-61, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15474561

RESUMO

To develop an experimental system for studying ginsenoside biosynthesis, we generated thousands of ginseng (Panax ginseng C.A. Meyer) hairy roots, genetically transformed roots induced by Agrobacterium rhizogenes, and analyzed the ginsenosides in the samples. 27 putative ginsenosides were detected in ginseng hairy roots. Quantitative and qualitative variations in the seven major ginsenosides were profiled in 993 ginseng hairy root lines using LC/MS and HPLC-UV. Cluster analysis of metabolic profiling data enabled us to select hairy root lines, which varied significantly in ginsenoside production. We selected hairy root lines producing total ginsenoside contents 4-5 times higher than that of a common hairy root population, as well as lines that varied in the ratio of the protopanaxadiol to protopanaxatriol type ginsenoside. Some of the hairy root lines produce only a single ginsenoside in relatively high amounts. These metabolites represent the end product of gene expression, thus metabolic profiling can give a broad view of the biochemical status or biochemical phenotype of a hairy root line that can be directly linked to gene function.


Assuntos
Ginsenosídeos/biossíntese , Panax/genética , Raízes de Plantas/metabolismo , Ginsenosídeos/análise , Estrutura Molecular , Raízes de Plantas/genética , Plantas Geneticamente Modificadas , Rhizobium
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...