Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 16(19): 9295-9310, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38683106

RESUMO

Photoelectrochemical (PEC) water splitting, recognized for its potential in producing solar hydrogen through clean and sustainable methods, has gained considerable interest, particularly with the utilization of semiconductor nanocrystal quantum dots (QDs). This minireview focuses on recent advances in PEC hydrogen production using I-III-VI semiconductor QDs. The outstanding optical and electrical properties of I-III-VI QDs, which can be readily tuned by modifying their size, composition, and shape, along with an inherent non-toxic nature, make them highly promising for PEC applications. The performance of PEC devices using these QDs can be enhanced by various strategies, including ligand modification, defect engineering, doping, alloying, and core/shell heterostructure engineering. These approaches have notably improved the photocurrent densities for hydrogen production, achieving levels comparable to those of conventional heavy-metal-based counterparts. Finally, this review concludes by addressing the present challenges and future prospects of these QDs, underlining crucial steps for their practical applications in solar hydrogen production.

2.
Chemistry ; 29(19): e202203810, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36805697

RESUMO

In principle, photocatalytic activity can be precisely controlled with crystalline catalysts. However, an amorphous photocatalyst could be a viable candidate for CO2 photoreduction to form value-added products. The amorphous phase is currently part of the crystalline material in several ongoing CO2 photoreduction studies. Additionally, no study indicates the amorphous material required for overall CO2 photoreduction. This perspective review article highlights fundamental assumptions that are necessary to gain insights and understand the effectiveness of amorphous photocatalysts for CO2 photoreduction. We start with basic ideas and theories about these materials, including light harvesting, variable coordination number, and the interaction of CO2 molecules with the amorphous catalytic surface. To understand the prospects of the amorphous photocatalyst, we explore machine learning with EXAFS. Furthermore, we discuss product selectivity and regeneration of photocatalysts in detail. Finally, we briefly review the work in progress on amorphous materials and compare it to that on crystalline ones.

3.
ChemSusChem ; 16(11): e202202017, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-36840941

RESUMO

Photoelectrochemical (PEC) hydrogen production is an emerging technology that uses renewable solar light aimed to establish a sustainable carbon-neutral society. The barriers to commercialization are low efficiency and high cost. To date, researchers have focused on materials and systems. However, recent studies have been conducted to utilize thermal effects in PEC hydrogen production. This Review provides a fresh perspective to utilize the thermal effects for PEC performance enhancement while delineating the underlying principles and equations associated with efficiency. The fundamentals of the thermal effect on the PEC system are summarized from various perspectives: kinetics, thermodynamics, and empirical equations. Based on this, materials are classified as plasmonic metals, quantum dot-based semiconductors, and photothermal organic materials, which have an inherent response to photothermal irradiation. Finally, the economic viability and challenges of these strategies for PEC are explained, which can pave the way for the future progress in the field.


Assuntos
Hidrogênio , Água , Luz Solar , Metais , Semicondutores
4.
ChemSusChem ; 16(3): e202201925, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36382625

RESUMO

Solar-driven photoelectrochemical (PEC) hydrogen production is one potential pathway to establish a carbon-neutral society. Nowadays, quantum dots (QDs)-sensitized semiconductors have emerged as promising materials for PEC hydrogen production due to their tunable bandgap by size or morphology control, displaying excellent optical and electrical properties. Nevertheless, they still suffer from anodic corrosion during long-term cycling, offering poor stability. This Review discussed advancements to improve long-term stability of QDs particularly in terms of cocatalysts and passivation layers. The working principle of PEC cells was reviewed, along with all important configurations adopted over recent years. The equations to assess PEC performance were also described. A greater emphasized was placed on QDs and incorporation of cocatalysts or passivation layers that could enhance the PEC performance by influencing the charge transfer and surface recombination processes.

5.
Chem Commun (Camb) ; 58(99): 13716-13719, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36315250

RESUMO

Using a catalyst-free one-pot polycondensation approach, a new donor-acceptor (D-A) based porous polyimide (PeTt-POP) photocatalyst was developed. PeTt-POP produced CH4 (125.63 ppm g-1 in 6 h) from CO2 under visible light irradiation in the gas-solid mode without the use of co-catalysts or sacrificial agents. The progress of the reaction and the corresponding intermediate species involved in the CO2 reduction were identified by operando DRIFTS experiments, from which a plausible reaction mechanism was proposed.

6.
Small ; 18(29): e2201428, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35695355

RESUMO

In recent years, single-atom catalysts (SACs) have attracted the interest of researchers owing to their suitability for various catalytic applications. For instance, their optoelectronic features, site-specific activity, and cost-effectiveness make SACs ideal for photocatalytic CO2 reduction. The activity, product selectivity, and photostability of SACs depend on various factors such as the nature of the metal/support material, the interaction between the metal atoms and support, light-harvesting ability, charge separation behavior, CO2 adsorption ability, active sites, and defects. Consequently, it is necessary to investigate these factors in depth to elucidate the working principle(s) of SACs for catalytic applications. Herein, the recent progress in the development of SACs for photocatalytic CO2 reduction with H2 O is reviewed. First, a brief overview of CO2 photoreduction and SACs for CO2 conversion is provided. Several synthesis strategies and useful techniques for characterizing SACs employed in heterogeneous catalysis are then described. Next, the challenges of SACs for photocatalytic CO2 reduction and related optimization strategies, in terms of activity, product selectivity, and stability, are explored. The progress in the development of noble metal- and transition metal-based SACs and dual-SACs for photocatalytic CO2 reduction is discussed. Finally, the prospects of SACs for CO2 reduction are considered.


Assuntos
Dióxido de Carbono , Elementos de Transição , Dióxido de Carbono/química , Catálise , Metais/química
7.
ACS Appl Mater Interfaces ; 14(1): 771-783, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34962379

RESUMO

The main component of natural gas is methane, whose combustion contributes to global warming. As such, sustainable, energy-efficient, nonfossil-based methane production is needed to satisfy current energy demands and chemical feedstocks. In this article, we have constructed a metal-free porous polyketone (TPA-DPA PPK) with donor-acceptor (D-A) groups with an extensive π-conjugation by facile Friedel-Crafts acylation reaction between triphenylamine (TPA) and pyridine-2,6-dicarbonyl dichloride (DPA). TPA-DPA PPK is a metal-free catalyst for visible-light-driven CO2 photoreduction to CH4, which can be used as a solar fuel in the absence of any cocatalyst and sacrificial agent. CH4 production (152.65 ppm g-1) is ∼5 times greater than that of g-C3N4 under the same test conditions. Charge-density difference plots from excited-state time-dependent density functional theory (TD-DFT) calculations indicate a depletion and accumulation of charge density among the donor/acceptor functional groups upon photoexcitation. Most notably, binding energies from DFT demonstrate that H2O is more strongly bound with the pyridinic nitrogen group than CO2, which shed insight into mechanistic pathways for photocatalytic CO2 reduction.

8.
Front Chem ; 9: 734108, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34660530

RESUMO

Solar energy-driven carbon dioxide (CO2) reduction to valuable solar fuels/chemicals (e.g., methane, ethanol, and carbon monoxide) using particulate photocatalysts is regarded as one of the promising and effective approaches to deal with energy scarcity and global warming. The growth of nanotechnology plays an eminent role in improving CO2 reduction (CO2R) efficiencies by means of offering opportunities to tailor the morphology of photocatalysts at a nanoscale regime to achieve enhanced surface reactivity, solar light absorption, and charge separation, which are decisive factors for high CO2R efficiency. Notably, quantum dots (QDs), tiny pieces of semiconductors with sizes below 20 nm, offering a myriad of advantages including maximum surface atoms, very short charge migration lengths, size-dependent energy band positions, multiple exciton generation effect, and unique optical properties, have recently become a rising star in the CO2R application. In this review, we briefly summarized the progress so far achieved in QD-assisted CO2 photoreduction, highlighting the advantages of QDs prepared with diverse chemical compositions such as metal oxides, metal chalcogenides, carbon, metal halide perovskites, and MXenes.

9.
Nanomaterials (Basel) ; 10(12)2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33371375

RESUMO

Perovskite materials have been widely considered as emerging photocatalysts for CO2 reduction due to their extraordinary physicochemical and optical properties. Perovskites offer a wide range of benefits compared to conventional semiconductors, including tunable bandgap, high surface energy, high charge carrier lifetime, and flexible crystal structure, making them ideal for high-performance photocatalytic CO2 reduction. Notably, defect-induced perovskites, for example, crystallographic defects in perovskites, have given excellent opportunities to tune perovskites' catalytic properties. Recently, lead (Pb) halide perovskite and their composites or heterojunction with other semiconductors, metal nanoparticles (NPs), metal complexes, graphene, and metal-organic frameworks (MOFs) have been well established for CO2 conversion. Besides, various halide perovskites have come under focus to avoid the toxicity of lead-based materials. Therefore, we reviewed the recent progress made by Pb and Pb-free halide perovskites in photo-assisted CO2 reduction into useful chemicals. We also discussed the importance of various factors like change in solvent, structure defects, and compositions in the fabrication of halide perovskites to efficiently convert CO2 into value-added products.

10.
Chem Commun (Camb) ; 56(52): 7080-7083, 2020 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-32494792

RESUMO

A dye-sensitized betavoltaic cell is developed for the first time, which utilizes radioisotopic carbon, composed of nano-sized quantum dots, and ruthenium-based dye sensitized TiO2 as electrodes. In this cell, emitted beta radiations are absorbed by the dye rather than TiO2, which resulted in enhanced performance compared to the pristine betavoltaic cell.

11.
ACS Appl Mater Interfaces ; 12(15): 18056-18064, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32073828

RESUMO

In spite of recent developments in mass spectrometry imaging techniques, high-resolution multiplex protein bioimaging techniques are required to unveil the complex inter- and intracellular biomolecular interactions for accurate understanding of life phenomena and disease mechanisms. Herein, we report multiplex protein imaging with secondary ion mass spectrometry (SIMS) using metal oxide nanoparticle (MONP)-conjugated antibodies with <300 nm spatial resolution in the low ion dose without ion beam damage because of the high secondary ion yields of the MONPs, which can provide simultaneous imaging of several proteins, especially from cell membranes. We applied our new imaging technique for the study of hippocampal tissue samples from control and Alzheimer's disease (AD) model mice; the proximity of protein clusters in the hippocampus CA1 region showed intriguing dependence on aging and AD progress, suggesting that protein cluster proximity may be helpful for understanding pathological pathways in the microscopic cellular level.


Assuntos
Anticorpos/imunologia , Nanopartículas Metálicas/química , Proteínas/imunologia , Espectrometria de Massa de Íon Secundário/métodos , Doença de Alzheimer/diagnóstico por imagem , Animais , Anticorpos/química , Anticorpos Imobilizados/química , Anticorpos Imobilizados/imunologia , Região CA1 Hipocampal/diagnóstico por imagem , Região CA1 Hipocampal/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Óxidos , Tamanho da Partícula , Proteínas/metabolismo
12.
RSC Adv ; 10(71): 43514-43522, 2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-35519706

RESUMO

Invasive bioelectrodes are widely used as an effective treatment for several acute and chronic diseases. In earlier work using high surface area invasive porous bioelectrodes evaluated in an animal model of alcoholism withdrawal, we demonstrated significantly improved electrophysiological and behavioral responses. In this study, we further modify the surface of these invasive porous bioelectrodes with noble metal (Ag, Au, Pt) nanoparticles. Compared to both conventional and porous bioelectrodes, noble metal sensitized invasive porous bioelectrodes show markedly increased low threshold (LT) and wide dynamic range (WDR) neuronal activity. In particular, Pt-sensitized invasive porous bioelectrodes show the highest WDR neuronal activity only upon insertion. In addition, Ag-sensitized invasive porous bioelectrodes, whose surface area is about 37 times greater than that of conventional bioelectrodes, show improved electrochemical properties with higher LT and WDR neuronal activity when stimulated. In an animal model of chronic alcoholism, using normal and alcohol-treated Sprague-Dawley (SD) rats evaluated with the elevated plus maze (EPM) test, the Ag-sensitized invasive porous bioelectrodes show about 20% higher open arms time. These results suggest that these noble metal-sensitized invasive bioelectrodes may offer improved therapeutic outcomes for the treatment of chronic alcoholism, and given these enhanced electrophysiological properties, for other conditions as well.

13.
PLoS One ; 14(12): e0226304, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31826009

RESUMO

BACKGROUND: Recently, porous acupuncture (PA), which is anodized to increase its surface area for higher stimulation intensity, was developed and showed significantly improved therapeutic effects with more comfort as compared with original acupuncture (OA) in vivo. However, the impact of PA on the change of local blood flow as well as its efficacy and acceptability has not yet been confirmed in a clinical trial. In a randomized, controlled crossover clinical trial, we investigated the effects of PA on the change in local blood flow using laser Doppler perfusion imaging and considered the sensation of pain intensity and discomfort severity using a visual analogue scale (VAS) to explore its physiological impact and the possibility of PA in clinical use. METHODS: Twenty-one healthy participants were randomly treated with PA or OA on one side of Zusanli (ST36) and each participant served as his or her own control. Baseline local blood flow and galvanic skin response (GSR) were obtained for 5 min and acupuncture interventions were subsequently performed. Next, local blood flow and GSR were subsequently obtained for 10 min after insertion, 10 min after manipulation, and 5 min after the withdrawal of acupuncture. At the end of the experiment, participants were asked to indicate the sensation of pain intensity at each session of insertion, retention, manipulation, and withdrawal as well as the overall pain intensity and discomfort severity. RESULTS: PA significantly increased the local blood flow as compared with OA and there was no significant difference in GSR between patients treated with PA versus OA in each phase of insertion and manipulation. No significant difference in pain intensity or discomfort severity was found during manipulation, retention, or withdrawal of acupuncture. CONCLUSIONS: These results indicate that PA increases local blood flow, which can be closely related to the observed enhanced performance, without any associated discomfort or pain, suggesting its applicability in clinical practice.


Assuntos
Acupuntura/métodos , Nanoporos , Pele/diagnóstico por imagem , Adolescente , Adulto , Feminino , Resposta Galvânica da Pele , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Dor/patologia , Medição da Dor , Imagem de Perfusão/métodos , Fluxo Sanguíneo Regional , Índice de Gravidade de Doença , Pele/irrigação sanguínea , Adulto Jovem
14.
Front Neurosci ; 13: 652, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31281240

RESUMO

Over the past several decades, clinical studies have shown significant analgesic effects of acupuncture. The efficacy of acupuncture treatment has improved with the recent development of nanoporous needles (PN), which are produced by modifying the needle surface using nanotechnology. Herein, we showed that PN at acupoint ST36 produces prolonged analgesic effects in an inflammatory pain model; the analgesic effects of PN acupuncture were sustained over 2 h, while those using a conventional needle (CN) lasted only 30 min. In addition, the PN showed greater therapeutic effects than CN after 10 acupuncture treatments once per day for 10 days. We explored how the porous surface of the PN contributes to changes in local tissue, which may in turn result in enhanced analgesic effects. We showed that the PN has greater rotational torque and pulling force than the CN, particularly at acupoints ST36 and LI11, situated on thick muscle layers. Additionally, in ex vivo experiments, the PN showed greater winding of subcutaneous connective tissues and muscle layers. Our results suggest that local mechanical forces are augmented by the PN and its nanoporous surface, contributing to the enhanced and prolonged analgesic effects of PN acupuncture.

16.
Micromachines (Basel) ; 10(5)2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31096666

RESUMO

Photocatalytic conversion of CO2 to useful products is an alluring approach for acquiring the two-fold benefits of normalizing excess atmospheric CO2 levels and the production of solar chemicals/fuels. Therefore, photocatalytic materials are continuously being developed with enhanced performance in accordance with their respective domains. In recent years, nanostructured photocatalysts such as one dimensional (1-D), two dimensional (2-D) and three dimensional (3-D)/hierarchical have been a subject of great importance because of their explicit advantages over 0-D photocatalysts, including high surface areas, effective charge separation, directional charge transport, and light trapping/scattering effects. Furthermore, the strategy of doping (metals and non-metals), as well as coupling with a secondary material (noble metals, another semiconductor material, graphene, etc.), of nanostructured photocatalysts has resulted in an amplified photocatalytic performance. In the present review article, various titanium dioxide (TiO2)-based nanostructured photocatalysts are briefly overviewed with respect to their application in photocatalytic CO2 conversion to value-added chemicals. This review primarily focuses on the latest developments in TiO2-based nanostructures, specifically 1-D (TiO2 nanotubes, nanorods, nanowires, nanobelts etc.) and 2-D (TiO2 nanosheets, nanolayers), and the reaction conditions and analysis of key parameters and their role in the up-grading and augmentation of photocatalytic performance. Moreover, TiO2-based 3-D and/or hierarchical nanostructures for CO2 conversions are also briefly scrutinized, as they exhibit excellent performance based on the special nanostructure framework, and can be an exemplary photocatalyst architecture demonstrating an admirable performance in the near future.

17.
Materials (Basel) ; 12(7)2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30987135

RESUMO

In the current work, stable prenucleated PbS quantum dots (QDs) with a sub-nanometer (0.8 nm) size have been successfully synthesized via a systematically designed experiment. A detailed analysis of critical nucleation, growth, and stability for such ultrasmall prenucleated clusters is done. The experimental strategy is based on controlled concentration, temperature and injection of respective precursors, thus enabling us to control nucleation rate and separation of stable sub-nanometer PbS QDs with size 0.8 nm. Significantly, by providing additional thermal energy to sub-nanometer PbS QDs, we achieved the fully nucleated cubic crystalline structure of PbS with size of around 1.5 nm. The size and composition of the prenucleated QDs are investigated by sophisticated tools like X-ray photoelectron spectroscopy (XPS) and medium energy ion scattering (MEIS) spectroscopy which confirms the synthesis of PbS with Pb2+ rich surface while the UV-Vis spectroscopy and X-ray diffraction (XRD) data suggests an alternative crystallization path. Non-classical nucleation theory is employed to substantiate the growth mechanism of prenucleated PbS QDs.

18.
Materials (Basel) ; 12(3)2019 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-30759744

RESUMO

Intracerebral local field potential (LFP) measurements are commonly used to monitor brain activity, providing insight into the flow of information across neural networks. Herein we describe synthesis and application of a neural electrode possessing a nano/micro-scale porous surface topology for improved LFP measurement. Compared with conventional brain electrodes, the porous electrodes demonstrate higher measured amplitudes with lower noise levels.

19.
J Acupunct Meridian Stud ; 11(3): 107-115, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29635041

RESUMO

We investigate the biocompatibility of a new class of acupuncture needles that possess a hierarchical nano/microscale porous surface topology, referred to as porous acupuncture needles (PAN). The PAN is synthesized via a facile electrochemical anodization technique by which a surface area approximately 20 times greater than a conventional acupuncture needle, of approximately the same diameter, is obtained. PAN biocompatibility is evaluated using a variety of standard tests, with results indicating that the PAN can safely be used within therapeutic practice.


Assuntos
Terapia por Acupuntura , Nanoporos , Agulhas , Teste de Materiais
20.
Sci Rep ; 7(1): 12900, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-29018212

RESUMO

Acupuncture originated within the auspices of Oriental medicine, and today is used as an alternative method for treating various diseases and symptoms. The physiological mechanisms of acupuncture appear to involve the release of endogenous opiates and neurotransmitters, with the signals mediating through electrical stimulation of the central nervous system (CNS). Earlier we reported a nanoporous stainless steel acupuncture needle with enhanced therapeutic properties, evaluated by electrophysiological and behavioral responses in Sprague-Dawley (SD) rats. Herein, we investigate molecular changes in colorectal cancer (CRC) rats by acupuncture treatment using the nanoporous needles. Treatment at acupoint HT7 is found most effective at reducing average tumor size, ß-catenin expression levels, and the number of aberrant crypt foci in the colon endothelium. Surface modification of acupuncture needles further enhances the therapeutic effects of acupuncture treatment in CRC rats.


Assuntos
Terapia por Acupuntura , Neoplasias Colorretais/terapia , Nanoporos , Agulhas , Pontos de Acupuntura , Animais , Pólipos do Colo/patologia , Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica , Masculino , Nanoporos/ultraestrutura , Estadiamento de Neoplasias , Ratos Sprague-Dawley , Propriedades de Superfície , Carga Tumoral , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...