Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pathogens ; 11(8)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36015018

RESUMO

Trypanosoma cruzi, the causative agent of Chagas disease, faces changes in redox status and nutritional availability during its life cycle. However, the influence of oxygen fluctuation upon the biology of T. cruzi is unclear. The present work investigated the response of T. cruzi epimastigotes to hypoxia. The parasites showed an adaptation to the hypoxic condition, presenting an increase in proliferation and a reduction in metacyclogenesis. Additionally, parasites cultured in hypoxia produced more reactive oxygen species (ROS) compared to parasites cultured in normoxia. The analyses of the mitochondrial physiology demonstrated that hypoxic condition induced a decrease in both oxidative phosphorylation and mitochondrial membrane potential (ΔΨm) in epimastigotes. In spite of that, ATP levels of parasites cultivated in hypoxia increased. The hypoxic condition also increased the expression of the hexokinase and NADH fumarate reductase genes and reduced NAD(P)H, suggesting that this increase in ATP levels of hypoxia-challenged parasites was a consequence of increased glycolysis and fermentation pathways. Taken together, our results suggest that decreased oxygen levels trigger a shift in the bioenergetic metabolism of T. cruzi epimastigotes, favoring ROS production and fermentation to sustain ATP production, allowing the parasite to survive and proliferate in the insect vector.

2.
Front Cell Infect Microbiol ; 11: 640561, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33842389

RESUMO

Leishmania infantum is a protozoan parasite that causes a vector borne infectious disease in humans known as visceral leishmaniasis (VL). This pathology, also caused by L. donovani, presently impacts the health of 500,000 people worldwide, and is treated with outdated anti-parasitic drugs that suffer from poor treatment regimens, severe side effects, high cost and/or emergence of resistant parasites. In previous works we have disclosed the anti-Leishmania activity of (-)-Epigallocatechin 3-O-gallate (EGCG), a flavonoid compound present in green tea leaves. To date, the mechanism of action of EGCG against Leishmania remains unknown. This work aims to shed new light into the leishmanicidal mode of action of EGCG. Towards this goal, we first confirmed that EGCG inhibits L. infantum promastigote proliferation in a concentration-dependent manner. Second, we established that the leishmanicidal effect of EGCG was associated with i) mitochondria depolarization and ii) decreased concentration of intracellular ATP, and iii) increased concentration of intracellular H2O2. Third, we found that the leishmanicidal effect and the elevated H2O2 levels induced by of EGCG can be abolished by PEG-catalase, strongly suggesting that this flavonoid kills L. infantum promastigotes by disturbing their intracellular redox balance. Finally, we gathered in silico and in vitro evidence that EGCG binds to trypanothione reductase (TR), a central enzyme of the redox homeostasis of Leishmania, acting as a competitive inhibitor of its trypanothione substrate.


Assuntos
Leishmania infantum , Parasitos , Animais , Humanos , Peróxido de Hidrogênio , NADH NADPH Oxirredutases , Oxirredução
3.
An Acad Bras Cienc ; 92(suppl 2): e20180968, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33146273

RESUMO

Leishmaniasis is a neglected disease caused by Leishmania. Chemotherapy remains the mainstay for leishmaniasis control; however, available drugs fail to provide a parasitological cure, and are associated with high toxicity. Natural products are promising leads for the development of novel chemotherapeutics against leishmaniasis. This work investigated the leishmanicidal properties of ethanolic extract of Croton blanchetianus (EECb) on Leishmania infantum and Leishmania amazonensis, and found that EECb, rich in terpenic compounds, was active against promastigote and amastigote forms of both Leishmania species. Leishmania infantum promastigotes and amastigotes presented IC50 values of 208.6 and 8.8 µg/mL, respectively, whereas Leishmania amazonensis promastigotes and amastigotes presented IC50 values of 73.6 and 3.1 µg/mL, respectively. Promastigotes exposed to EECb (100 µg/mL) had their body cellular volume reduced and altered to a round shape, and the flagellum was duplicated, suggesting that EECb may interfere with the process of cytokinesis, which could be the cause of the decline in the parasite multiplication rate. Regarding possible EECb targets, a marked depolarization of the mitochondrial membrane potential was observed. No cytotoxic effects of EECb were observed in murine macrophages at concentrations below 60 µg/mL, and the CC50 obtained was 83.8 µg/mL. Thus, the present results indicated that EECb had effective and selective effects against Leishmania infantum and Leishmania amazonensis, and that these effects appeared to be mediated by mitochondrial dysfunction.


Assuntos
Antiprotozoários , Croton , Animais , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias , Extratos Vegetais/farmacologia
4.
J Nat Prod ; 82(9): 2664-2667, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31503486

RESUMO

In addition to generating side effects and resistance, treatment for visceral leishmaniasis remains mostly ineffective and expensive, and it has a long duration. Thus, natural products are an important alternative for treatment of the disease. In this study, we demonstrate the in vitro and in vivo activity of (-)-epigallocatechin 3-O-gallate (1) against Leishmania infantum. Compound 1 reduced the infection index with an EC50 value of 2.6 µM. Oral administration of 1 on L. infantum-infected BALB/c mice was capable to reduce the liver-parasite load with a ED50 and ED90 value of 12.4 and 21.5 mg/kg/day, respectively. Together, the results demonstrated 1 as a new compound for the treatment of visceral leishmaniasis.


Assuntos
Antiprotozoários/uso terapêutico , Catequina/análogos & derivados , Leishmaniose Visceral/tratamento farmacológico , Animais , Catequina/química , Catequina/uso terapêutico , Modelos Animais de Doenças , Fígado/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Carga Parasitária
5.
Free Radic Biol Med ; 108: 183-191, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28363600

RESUMO

Trypanosoma cruzi is the causative agent of Chagas disease and has a single mitochondrion, an organelle responsible for ATP production and the main site for the formation of reactive oxygen species (ROS). T. cruzi is an obligate intracellular parasite with a complex life cycle that alternates between vertebrate and invertebrate hosts, therefore the development of survival strategies and morphogenetic adaptations to deal with the various environments is mandatory. Over the years our group has been studying the vector-parasite interactions using heme as a physiological oxidant molecule that triggered epimastigote proliferation however, the source of ROS induced by heme remained unknown. In the present study we demonstrate the involvement of heme in the parasite mitochondrial metabolism, decreasing oxygen consumption leading to increased mitochondrial ROS and membrane potential. First, we incubated epimastigotes with carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone (FCCP), an uncoupler of oxidative phosphorylation, which led to decreased ROS formation and parasite proliferation, even in the presence of heme, correlating mitochondrial ROS and T. cruzi survival. This hypothesis was confirmed after the mitochondria-targeted antioxidant ((2-(2,2,6,6 Tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl) triphenylphosphonium chloride (MitoTEMPO) decreased both heme-induced ROS and epimastigote proliferation. Furthermore, heme increased the percentage of tetramethylrhodamine methyl ester (TMRM) positive parasites tremendously-indicating the hyperpolarization and increase of potential of the mitochondrial membrane (ΔΨm). Assessing the mitochondrial functional metabolism, we observed that in comparison to untreated parasites, heme-treated epimastigotes decreased their oxygen consumption, and increased the complex II-III activity. These changes allowed the electron flow into the electron transport system, even though the complex IV (cytochrome c oxidase) activity decreased significantly, showing that heme-induced mitochondrial ROS appears to be a consequence of the enhanced mitochondrial physiological modulation. Finally, the parasites that were submitted to high concentrations of heme presented no alterations in the ultrastructure. Consequently, our results suggest that heme released by the insect vector after the blood meal, modify epimastigote mitochondrial physiology to increase ROS as a metabolic mechanism to maintain epimastigote survival and proliferation.


Assuntos
Doença de Chagas/imunologia , Heme/metabolismo , Mitocôndrias/metabolismo , Trypanosoma cruzi/fisiologia , Animais , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/metabolismo , Processos de Crescimento Celular , Células Cultivadas , Transporte de Elétrons , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Metabolismo Energético , Humanos , Estágios do Ciclo de Vida , Potencial da Membrana Mitocondrial , Compostos Organofosforados/metabolismo , Consumo de Oxigênio , Piperidinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Rodaminas/metabolismo
6.
PLoS Negl Trop Dis ; 10(2): e0004442, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26862901

RESUMO

BACKGROUND: The treatment for leishmaniasis is currently based on pentavalent antimonials and amphotericin B; however, these drugs result in numerous adverse side effects. The lack of affordable therapy has necessitated the urgent development of new drugs that are efficacious, safe, and more accessible to patients. Natural products are a major source for the discovery of new and selective molecules for neglected diseases. In this paper, we evaluated the effect of apigenin on Leishmania amazonensis in vitro and in vivo and described the mechanism of action against intracellular amastigotes of L. amazonensis. METHODOLOGY/PRINCIPAL FINDING: Apigenin reduced the infection index in a dose-dependent manner, with IC50 values of 4.3 µM and a selectivity index of 18.2. Apigenin induced ROS production in the L. amazonensis-infected macrophage, and the effects were reversed by NAC and GSH. Additionally, apigenin induced an increase in the number of macrophages autophagosomes after the infection, surrounding the parasitophorous vacuole, suggestive of the involvement of host autophagy probably due to ROS generation induced by apigenin. Furthermore, apigenin treatment was also effective in vivo, demonstrating oral bioavailability and reduced parasitic loads without altering serological toxicity markers. CONCLUSIONS/SIGNIFICANCE: In conclusion, our study suggests that apigenin exhibits leishmanicidal effects against L. amazonensis-infected macrophages. ROS production, as part of the mechanism of action, could occur through the increase in host autophagy and thereby promoting parasite death. Furthermore, our data suggest that apigenin is effective in the treatment of L. amazonensis-infected BALB/c mice by oral administration, without altering serological toxicity markers. The selective in vitro activity of apigenin, together with excellent theoretical predictions of oral availability, clear decreases in parasite load and lesion size, and no observed compromises to the overall health of the infected mice encourage us to supports further studies of apigenin as a candidate for the chemotherapeutic treatment of leishmaniasis.


Assuntos
Antipruriginosos/administração & dosagem , Apigenina/administração & dosagem , Autofagia/efeitos dos fármacos , Leishmania/fisiologia , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Cutânea/fisiopatologia , Espécies Reativas de Oxigênio/imunologia , Animais , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Leishmania/efeitos dos fármacos , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/parasitologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C
7.
PLoS Negl Trop Dis ; 8(8): e3093, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25144225

RESUMO

BACKGROUND: Leishmaniasis is a parasitic disease associated with extensive mortality and morbidity. The treatment for leishmaniasis is currently based on pentavalent antimonials and amphotericin B; however, these drugs result in numerous adverse side effects. Natural compounds have been used as novel treatments for parasitic diseases. In this paper, we evaluated the effect of (-)-epigallocatechin 3-O-gallate (EGCG) on Leishmania braziliensis in vitro and in vivo and described the mechanism of EGCG action against L. braziliensis promastigotes and intracellular amastigotes. METHODOLOGY/PRINCIPAL FINDING: In vitro activity and reactive oxygen species (ROS) measurements were determined during the promastigote and intracellular amastigote life stages. The effect of EGCG on mitochondrial membrane potential (ΔΨm) was assayed using JC-1, and intracellular ATP concentrations were measured using a luciferin-luciferase system. The in vivo experiments were performed in infected BALB/c mice orally treated with EGCG. EGCG reduced promastigote viability and the infection index in a time- and dose-dependent manner, with IC50 values of 278.8 µM and 3.4 µM, respectively, at 72 h and a selectivity index of 149.5. In addition, EGCG induced ROS production in the promastigote and intracellular amastigote, and the effects were reversed by polyethylene glycol (PEG)-catalase. Additionally, EGCG reduced ΔΨm, thereby decreasing intracellular ATP concentrations in promastigotes. Furthermore, EGCG treatment was also effective in vivo, demonstrating oral bioavailability and reduced parasitic loads without altering serological toxicity markers. CONCLUSIONS/SIGNIFICANCE: In conclusion, our study demonstrates the leishmanicidal effects of EGCG against the two forms of L. braziliensis, the promastigote and amastigote. In addition, EGCG promotes ROS production as a part of its mechanism of action, resulting in decreased ΔΨm and reduced intracellular ATP concentrations. These actions ultimately culminate in parasite death. Furthermore, our data suggest that EGCG is orally effective in the treatment of L. braziliensis-infected BALB/c mice without altering serological toxicity markers.


Assuntos
Antioxidantes/farmacologia , Catequina/análogos & derivados , Leishmania braziliensis/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Animais , Catequina/farmacologia , Leishmaniose/parasitologia , Camundongos , Camundongos Endogâmicos BALB C
8.
J Nat Prod ; 76(10): 1993-6, 2013 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-24106750

RESUMO

(-)-Epigallocatechin 3-O-gallate (1), the most abundant flavanol in green tea, has been reported to have antiproliferative effects on Trypanosoma cruzi. The present study reports the effects in vitro and in vivo of 1 on Leishmania amazonensis. L. amazonensis-infected macrophages treated with 1 exhibited a significant reduction of the infection index in a dose-dependent manner, with an IC50 value of 1.6 µM. Oral administration of 1 on L. amazonensis-infected BALB/c mice (30 mg/kg/day) resulted in a decrease in the lesion size and parasite burden, without altering serological markers of toxicity. These data demonstrate the in vitro and in vivo leishmanicidal effects of compound 1.


Assuntos
Catequina/análogos & derivados , Leishmania mexicana/efeitos dos fármacos , Administração Oral , Animais , Brasil , Catequina/química , Catequina/farmacologia , Relação Dose-Resposta a Droga , Concentração Inibidora 50 , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Estereoisomerismo , Chá/química , Trypanosoma cruzi/efeitos dos fármacos
9.
J Nat Prod ; 76(8): 1505-8, 2013 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-23876028

RESUMO

The present study reports the mechanism of the antileishmanial activity of quercetin against the intracellular amastigote form of Leishmania amazonensis. Treatment with 1 reduced the infection index in L. amazonensis-infected macrophages in a dose-dependent manner, with an IC50 value of 3.4 µM and a selectivity index of 16.8, and additionally increased ROS generation also in a dose-dependent manner. Quercetin has been described as a pro-oxidant that induces the production of reactive oxygen species, which can cause cell death. Taken together, these results suggest that ROS production plays a role in the mechanism of action of 1 in the control of intracellular amastigotes of L. amazonensis.


Assuntos
Leishmania/efeitos dos fármacos , Quercetina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Morte Celular , Relação Dose-Resposta a Droga , Macrófagos/metabolismo , Estrutura Molecular , Quercetina/química , Espécies Reativas de Oxigênio/análise
10.
Exp Parasitol ; 132(2): 151-5, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22735546

RESUMO

Epigallocatechin-3-gallate (EGCG), the most abundant flavonoid in green tea, has been reported to have antiproliferative effects on Trypanosoma cruzi however, the mechanism of protozoan action of EGCG has not been studied. In the present study, we demonstrate the mechanism for the antileishmanial activity of EGCG against Leishmania amazonensis promastigotes. Incubation with EGCG significantly inhibited L. amazonensis promastigote proliferation in a time- and dose-dependent manner. The IC(50) for EGCG at 120 h was 0.063 mM. Ultrastructural alterations of the mitochondria were observed in promastigote treated with EGCG, being the organelle injury reinforced by the decrease in rhodamine 123 fluorescence. The effects of several drugs that interfere directly with mitochondrial physiology in parasites such as Leishmania have been described. The unique mitochondrial features of Leishmania make this organelle an ideal drug target while minimizing toxicity. These data suggest mitochondrial collapse as a part of the EGCG mechanism of action and demonstrate the leishmanicidal effect of EGCG.


Assuntos
Antioxidantes/farmacologia , Antiprotozoários/farmacologia , Catequina/análogos & derivados , Leishmania mexicana/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Catequina/farmacologia , Relação Dose-Resposta a Droga , Leishmania mexicana/crescimento & desenvolvimento , Leishmania mexicana/ultraestrutura , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Microscopia Eletrônica de Transmissão , Mitocôndrias/fisiologia , Mitocôndrias/ultraestrutura , Fatores de Tempo
11.
PLoS One ; 6(2): e14666, 2011 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-21346801

RESUMO

BACKGROUND: Leishmaniasis, a parasitic disease caused by protozoa of the genus Leishmania, affects more than 12 million people worldwide. Quercetin has generated considerable interest as a pharmaceutical compound with a wide range of therapeutic activities. One such activity is exhibited against the bloodstream parasite Trypanosoma brucei and amastigotes of Leishmania donovani. However, the mechanism of protozoan action of quercetin has not been studied. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we report here the mechanism for the antileishmanial activity of quercetin against Leishmania amazonensis promastigotes. Quercetin inhibited L. amazonensis promastigote growth in a dose- and time- dependent manner beginning at 48 hours of treatment and with maximum growth inhibition observed at 96 hours. The IC(50) for quercetin at 48 hours was 31.4 µM. Quercetin increased ROS generation in a dose-dependent manner after 48 hours of treatment. The antioxidant GSH and NAC each significantly reduced quercetin-induced cell death. In addition, quercetin caused mitochondrial dysfunction due to collapse of mitochondrial membrane potential. CONCLUSIONS/SIGNIFICANCE: The effects of several drugs that interfere directly with mitochondrial physiology in parasites such as Leishmania have been described. The unique mitochondrial features of Leishmania make this organelle an ideal drug target while minimizing toxicity. Quercetin has been described as a pro-oxidant, generating ROS which are responsible for cell death in some cancer cells. Mitochondrial membrane potential loss can be brought about by ROS added directly in vitro or induced by chemical agents. Taken together, our results demonstrate that quercetin eventually exerts its antileishmanial effect on L. amazonensis promastigotes due to the generation of ROS and disrupted parasite mitochondrial function.


Assuntos
Antiprotozoários/farmacologia , Leishmania/citologia , Leishmania/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Quercetina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Relação Dose-Resposta a Droga , Leishmania/efeitos dos fármacos , Leishmania/crescimento & desenvolvimento , Potencial da Membrana Mitocondrial/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...