Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(15): 9193-9209, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-38869059

RESUMO

Stress induces global stabilization of the mRNA poly(A) tail (PAT) and the assembly of untranslated poly(A)-tailed mRNA into mRNPs that accumulate in stress granules (SGs). While the mechanism behind stress-induced global PAT stabilization has recently emerged, the biological significance of PAT stabilization under stress remains elusive. Here, we demonstrate that stress-induced PAT stabilization is a prerequisite for SG formation. Perturbations in PAT length impact SG formation; PAT shortening, achieved by overexpressing mRNA deadenylases, inhibits SG formation, whereas PAT lengthening, achieved by overexpressing their dominant negative mutants or downregulating deadenylases, promotes it. PABPC1, which specifically binds to the PAT, is crucial for SG formation. Complementation analyses reveal that the PABC/MLLE domain of PABPC1, responsible for binding PAM2 motif-containing proteins, plays a key role. Among them, ataxin-2 is a known SG component. A dominant-negative approach reveals that the PAM2 motif of ataxin-2 is essential for SG formation. Notably, ataxin-2 increases stress sensitivity, lowering the threshold for SG formation, probably by promoting the aggregation of PABPC1-bound mRNA. The C-terminal region is responsible for the self-aggregation of ataxin-2. These findings underscore the critical roles of mRNA PAT, PABPC1 and ataxin-2 in SG formation and provide mechanistic insights into this process.


Assuntos
Ataxina-2 , Poli A , Proteína I de Ligação a Poli(A) , RNA Mensageiro , Grânulos de Estresse , Proteína I de Ligação a Poli(A)/metabolismo , Proteína I de Ligação a Poli(A)/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Ataxina-2/metabolismo , Ataxina-2/genética , Humanos , Grânulos de Estresse/metabolismo , Grânulos de Estresse/genética , Poli A/metabolismo , Ligação Proteica , Estabilidade de RNA , Células HeLa , Estresse Fisiológico/genética
2.
Biochem Biophys Res Commun ; 719: 150103, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38761636

RESUMO

The RNA-binding protein PKR serves as a crucial antiviral innate immune factor that globally suppresses translation by sensing viral double-stranded RNA (dsRNA) and by phosphorylating the translation initiation factor eIF2α. Recent findings have unveiled that single-stranded RNAs (ssRNAs), including in vitro transcribed (IVT) mRNA, can also bind to and activate PKR. However, the precise mechanism underlying PKR activation by ssRNAs, remains incompletely understood. Here, we developed a NanoLuc Binary Technology (NanoBiT)-based in vitro PKR dimerization assay to assess the impact of ssRNAs on PKR dimerization. Our findings demonstrate that, akin to double-stranded polyinosinic:polycytidylic acid (polyIC), an encephalomyocarditis virus (EMCV) RNA, as well as NanoLuc luciferase (Nluc) mRNA, can induce PKR dimerization. Conversely, homopolymeric RNA lacking secondary structure fails to promote PKR dimerization, underscoring the significance of secondary structure in this process. Furthermore, adenovirus VA RNA 1, another ssRNA, impedes PKR dimerization by competing with Nluc mRNA. Additionally, we observed structured ssRNAs capable of forming G-quadruplexes induce PKR dimerization. Collectively, our results indicate that ssRNAs have the ability to either induce or inhibit PKR dimerization, thus representing potential targets for the development of antiviral and anti-inflammatory agents.


Assuntos
Vírus da Encefalomiocardite , Multimerização Proteica , RNA de Cadeia Dupla , RNA Viral , eIF-2 Quinase , eIF-2 Quinase/metabolismo , eIF-2 Quinase/química , Humanos , RNA Viral/metabolismo , RNA Viral/genética , RNA Viral/química , Vírus da Encefalomiocardite/genética , RNA de Cadeia Dupla/metabolismo , RNA de Cadeia Dupla/química , Poli I-C/farmacologia , Conformação de Ácido Nucleico
3.
Cell Rep ; 41(4): 111548, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36288708

RESUMO

Translation of 5' terminal oligopyrimidine (TOP) mRNAs encoding the protein synthesis machinery is strictly regulated by an amino-acid-sensing mTOR pathway. However, its regulatory mechanism remains elusive. Here, we demonstrate that TOP mRNA translation positively correlates with its poly(A) tail length under mTOR active/amino-acid-rich conditions, suggesting that TOP mRNAs are post-transcriptionally controlled by poly(A) tail-length regulation. Consistent with this, the tail length of TOP mRNAs dynamically fluctuates in response to amino acid availability. The poly(A) tail shortens under mTOR active/amino-acid-rich conditions, whereas the long-tailed TOP mRNAs accumulate under mTOR inactive/amino-acid-starved (AAS) conditions. An RNA-binding protein, LARP1, is indispensable for the process. LARP1 interacts with non-canonical poly(A) polymerases and induces post-transcriptional polyadenylation of the target. Our findings illustrate that LARP1 contributes to the selective accumulation of TOP mRNAs with long poly(A) tails under AAS, resulting in accelerated ribosomal loading onto TOP mRNAs for the resumption of translation after AAS.


Assuntos
Autoantígenos , Ribonucleoproteínas , RNA Mensageiro/metabolismo , Ribonucleoproteínas/metabolismo , Autoantígenos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Ribossomos/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Polinucleotídeo Adenililtransferase/genética , Aminoácidos/metabolismo , Biossíntese de Proteínas
4.
Biochem Biophys Res Commun ; 553: 9-16, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33756349

RESUMO

The RNA-binding protein Ataxin-2 regulates translation and mRNA stability through cytoplasmic polyadenylation of the targets. Here we newly identified DDX6 as a positive regulator of the cytoplasmic polyadenylation. Analysis of Ataxin-2 interactome using LC-MS/MS revealed prominent interaction with the DEAD-box RNA helicase DDX6. DDX6 interacted with components of the Ataxin-2 polyadenylation machinery; Ataxin-2, PABPC1 and PAPD4. As in the case for Ataxin-2 downregulation, DDX6 downregulation led to an increase in Ataxin-2 target mRNAs with short poly(A) tails as well as a reduction in their protein expression. In contrast, Ataxin-2 target mRNAs with short poly(A) tails were decreased by the overexpression of Ataxin-2, which was compromised by the DDX6 downregulation. However, polyadenylation induced by Ataxin-2 tethering was not affected by the DDX6 downregulation. Taken together, these results suggest that DDX6 positively regulates Ataxin-2-induced cytoplasmic polyadenylation to maintain poly(A) tail length of the Ataxin-2 targets provably through accelerating binding of Ataxin-2 to the target mRNAs.


Assuntos
Ataxina-2/metabolismo , Citoplasma/metabolismo , RNA Helicases DEAD-box/metabolismo , Poliadenilação , Polinucleotídeo Adenililtransferase/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Cromatografia Líquida , Células HEK293 , Humanos , Poli A/genética , Poli A/metabolismo , Ligação Proteica , Mapas de Interação de Proteínas , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espectrometria de Massas em Tandem
5.
J Biol Chem ; 295(47): 15810-15825, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-32989052

RESUMO

The RNA-binding protein Ataxin-2 binds to and stabilizes a number of mRNA sequences, including that of the transactive response DNA-binding protein of 43 kDa (TDP-43). Ataxin-2 is additionally involved in several processes requiring translation, such as germline formation, long-term habituation, and circadian rhythm formation. However, it has yet to be unambiguously demonstrated that Ataxin-2 is actually involved in activating the translation of its target mRNAs. Here we provide direct evidence from a polysome profile analysis showing that Ataxin-2 enhances translation of target mRNAs. Our recently established method for transcriptional pulse-chase analysis under conditions of suppressing deadenylation revealed that Ataxin-2 promotes post-transcriptional polyadenylation of the target mRNAs. Furthermore, Ataxin-2 binds to a poly(A)-binding protein PABPC1 and a noncanonical poly(A) polymerase PAPD4 via its intrinsically disordered region (amino acids 906-1095) to recruit PAPD4 to the targets. Post-transcriptional polyadenylation by Ataxin-2 explains not only how it activates translation but also how it stabilizes target mRNAs, including TDP-43 mRNA. Ataxin-2 is known to be a potent modifier of TDP-43 proteinopathies and to play a causative role in the neurodegenerative disease spinocerebellar ataxia type 2, so these findings suggest that Ataxin-2-induced cytoplasmic polyadenylation and activation of translation might impact neurodegeneration (i.e. TDP-43 proteinopathies), and this process could be a therapeutic target for Ataxin-2-related neurodegenerative disorders.


Assuntos
Ataxina-2/metabolismo , Citoplasma/metabolismo , Poliadenilação , Biossíntese de Proteínas , Estabilidade de RNA , RNA Mensageiro/metabolismo , Ataxina-2/genética , Citoplasma/genética , Células HEK293 , Células HeLa , Humanos , Proteína I de Ligação a Poli(A)/genética , Proteína I de Ligação a Poli(A)/metabolismo , Polinucleotídeo Adenililtransferase/genética , Polinucleotídeo Adenililtransferase/metabolismo , Ligação Proteica , RNA Mensageiro/genética , Fatores de Poliadenilação e Clivagem de mRNA/genética , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo
6.
FEBS Lett ; 589(17): 2241-7, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26172506

RESUMO

The involvement of polypeptide chain-releasing factor eRF3 in translation termination and mRNA decay is well established. Moreover, the finding that the proteolytically processed isoform of eRF3 (p-eRF3) interacts with inhibitors of apoptosis proteins (IAPs) to activate caspase, implies that eRF3 is a cell death regulator. However, the protease(s) responsible for p-eRF3 production and how p-eRF3 regulates apoptosis remain unknown. Here, we show that calpain mediates p-eRF3 production in vitro and in living cells. p-eRF3 is produced in cells treated with ER stressors in a calpain-dependent manner. These findings suggest that p-eRF3 is a novel regulator of calpain-dependent cell death.


Assuntos
Cálcio/metabolismo , Calpaína/metabolismo , Fatores de Terminação de Peptídeos/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Western Blotting , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático , Células HEK293 , Humanos , Fatores de Terminação de Peptídeos/genética , Ligação Proteica , Isoformas de Proteínas/metabolismo , Proteólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA