Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cell Rep Med ; 4(10): 101227, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37852183

RESUMO

Drug repositioning seeks to leverage existing clinical knowledge to identify alternative clinical settings for approved drugs. However, repositioning efforts fail to demonstrate improved success rates in late-stage clinical trials. Focusing on 11 approved kinase inhibitors that have been evaluated in 139 repositioning hypotheses, we use data mining to characterize the state of clinical repurposing. Then, using a simple experimental correction with human serum proteins in in vitro pharmacodynamic assays, we develop a measurement of a drug's effective exposure. We show that this metric is remarkably predictive of clinical activity for a panel of five kinase inhibitors across 23 drug variant targets in leukemia. We then validate our model's performance in six other kinase inhibitors for two types of solid tumors: non-small cell lung cancer (NSCLC) and gastrointestinal stromal tumors (GISTs). Our approach presents a straightforward strategy to use existing clinical information and experimental systems to decrease the clinical failure rate in drug repurposing studies.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Leucemia , Neoplasias Pulmonares , Humanos , Reposicionamento de Medicamentos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico
2.
Inorg Chem Front ; 9(11): 2594-2607, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-36311556

RESUMO

We disclose novel amphiphilic ruthenium and osmium complexes that auto-assemble into nanomedicines with potent antiproliferative activity by inhibition of mitochondrial respiration. The self-assembling units were rationally designed from the [M(p-cymene)(1,10-phenanthroline)Cl]PF6 motif (where M is either RuII or OsII) with an appended C16 fatty chain to achieve high cellular activity, nano-assembling and mitochondrial targeting. These amphiphilic complexes block cell proliferation at the sub-micromolar range and are particularly potent towards glioblastoma neurospheres made from patient-derived cancer stem cells. A subcutaneous mouse model using these glioblastoma stem cells highlights one of our C16 OsII nanomedicines as highly successful in vivo. Mechanistically, we show that they act as metabolic poisons, strongly impairing mitochondrial respiration, corroborated by morphological changes and damage to the mitochondria. A genetic strategy based on RNAi gave further insight on the potential involvement of microtubules as part of the induced cell death. In parallel, we examined the structural properties of these new amphiphilic metal-based constructs, their reactivity and mechanism.

3.
JAMA Netw Open ; 5(5): e2214171, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35616938

RESUMO

Importance: In emergency epidemic and pandemic settings, public health agencies need to be able to measure the population-level attack rate, defined as the total percentage of the population infected thus far. During vaccination campaigns in such settings, public health agencies need to be able to assess how much the vaccination campaign is contributing to population immunity; specifically, the proportion of vaccines being administered to individuals who are already seropositive must be estimated. Objective: To estimate population-level immunity to SARS-CoV-2 through May 31, 2021, in Rhode Island, Massachusetts, and Connecticut. Design, Setting, and Participants: This observational case series assessed cases, hospitalizations, intensive care unit occupancy, ventilator occupancy, and deaths from March 1, 2020, to May 31, 2021, in Rhode Island, Massachusetts, and Connecticut. Data were analyzed from July 2021 to November 2021. Exposures: COVID-19-positive test result reported to state department of health. Main Outcomes and Measures: The main outcomes were statistical estimates, from a bayesian inference framework, of the percentage of individuals as of May 31, 2021, who were (1) previously infected and vaccinated, (2) previously uninfected and vaccinated, and (3) previously infected but not vaccinated. Results: At the state level, there were a total of 1 160 435 confirmed COVID-19 cases in Rhode Island, Massachusetts, and Connecticut. The median age among individuals with confirmed COVID-19 was 38 years. In autumn 2020, SARS-CoV-2 population immunity (equal to the attack rate at that point) in these states was less than 15%, setting the stage for a large epidemic wave during winter 2020 to 2021. Population immunity estimates for May 31, 2021, were 73.4% (95% credible interval [CrI], 72.9%-74.1%) for Rhode Island, 64.1% (95% CrI, 64.0%-64.4%) for Connecticut, and 66.3% (95% CrI, 65.9%-66.9%) for Massachusetts, indicating that more than 33% of residents in these states were fully susceptible to infection when the Delta variant began spreading in July 2021. Despite high vaccine coverage in these states, population immunity in summer 2021 was lower than planned owing to an estimated 34.1% (95% CrI, 32.9%-35.2%) of vaccines in Rhode Island, 24.6% (95% CrI, 24.3%-25.1%) of vaccines in Connecticut, and 27.6% (95% CrI, 26.8%-28.6%) of vaccines in Massachusetts being distributed to individuals who were already seropositive. Conclusions and Relevance: These findings suggest that future emergency-setting vaccination planning may have to prioritize high vaccine coverage over optimized vaccine distribution to ensure that sufficient levels of population immunity are reached during the course of an ongoing epidemic or pandemic.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto , Teorema de Bayes , COVID-19/epidemiologia , Vacinas contra COVID-19/uso terapêutico , Humanos , Incidência , New England
4.
Sci Adv ; 8(4): eabf9868, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35080987

RESUMO

State-level reopenings in late spring 2020 facilitated the resurgence of severe acute respiratory syndrome coronavirus 2 transmission. Here, we analyze age-structured case, hospitalization, and death time series from three states-Rhode Island, Massachusetts, and Pennsylvania-that had successful reopenings in May 2020 without summer waves of infection. Using 11 daily data streams, we show that from spring to summer, the epidemic shifted from an older to a younger age profile and that elderly individuals were less able to reduce contacts during the lockdown period when compared to younger individuals. Clinical case management improved from spring to summer, resulting in fewer critical care admissions and lower infection fatality rate. Attack rate estimates through 31 August 2020 are 6.2% [95% credible interval (CI), 5.7 to 6.8%] of the total population infected for Rhode Island, 6.7% (95% CI, 5.4 to 7.6%) in Massachusetts, and 2.7% (95% CI, 2.5 to 3.1%) in Pennsylvania.


Assuntos
COVID-19/epidemiologia , Dinâmica Populacional , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/mortalidade , COVID-19/virologia , Hospitalização/estatística & dados numéricos , Humanos , Incidência , Unidades de Terapia Intensiva , Massachusetts/epidemiologia , Pessoa de Meia-Idade , Pennsylvania/epidemiologia , Quarentena , Rhode Island/epidemiologia , SARS-CoV-2/isolamento & purificação , Análise de Sobrevida , Adulto Jovem
5.
medRxiv ; 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34909789

RESUMO

Estimating an infectious disease attack rate requires inference on the number of reported symptomatic cases of a disease, the number of unreported symptomatic cases, and the number of asymptomatic infections. Population-level immunity can then be estimated as the attack rate plus the number of vaccine recipients who had not been previously infected; this requires an estimate of the fraction of vaccines that were distributed to seropositive individuals. To estimate attack rates and population immunity in southern New England, we fit a validated dynamic epidemiological model to case, clinical, and death data streams reported by Rhode Island, Massachusetts, and Connecticut for the first 15 months of the COVID-19 pandemic, from March 1 2020 to May 31 2021. This period includes the initial spring 2020 wave, the major winter wave of 2020-2021, and the lagging wave of lineage B.1.1.7(Alpha) infections during March-April 2021. In autumn 2020, SARS-CoV-2 population immunity (equal to the attack rate at that point) in southern New England was still below 15%, setting the stage for a large winter wave. After the roll-out of vaccines in early 2021, population immunity in many states was expected to approach 70% by spring 2021, with more than half of this immune population coming from vaccinations. Our population immunity estimates for May 31 2021 are 73.4% (95% CrI: 72.9% - 74.1%) for Rhode Island, 64.1% (95% CrI: 64.0% - 64.4%) for Connecticut, and 66.3% (95% CrI: 65.9% - 66.9%) for Massachusetts, indicating that >33% of southern Englanders were still susceptible to infection when the Delta variant began spreading in July 2021. Despite high vaccine coverage in these states, population immunity in summer 2021 was lower than planned due to 34% (Rhode Island), 25% (Connecticut), and 28% (Massachusetts) of vaccine distribution going to seropositive individuals. Future emergency-setting vaccination planning will likely have to consider over-vaccination as a strategy to ensure that high levels of population immunity are reached during the course of an ongoing epidemic.

6.
iScience ; 24(11): 103343, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34825133

RESUMO

Genomic data can facilitate personalized treatment decisions by enabling therapeutic hypotheses in individual patients. Mutual exclusivity has been an empirically useful signal for identifying activating mutations that respond to single agent targeted therapies. However, a low mutation frequency can underpower this signal for rare variants. We develop a resampling based method for the direct pairwise comparison of conditional selection between sets of gene pairs. We apply this method to a transcript variant of anaplastic lymphoma kinase (ALK) in melanoma, termed ALKATI that was suggested to predict sensitivity to ALK inhibitors and we find that it is not mutually exclusive with key melanoma oncogenes. Furthermore, we find that ALKATI is not likely to be sufficient for cellular transformation or growth, and it does not predict single agent therapeutic dependency. Our work strongly disfavors the role of ALKATI as a targetable oncogenic driver that might be sensitive to single agent ALK treatment.

7.
medRxiv ; 2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34426816

RESUMO

In the United States, state-level re-openings in spring 2020 presented an opportunity for the resurgence of SARS-CoV-2 transmission. One important question during this time was whether human contact and mixing patterns could increase gradually without increasing viral transmission, the rationale being that new mixing patterns would likely be associated with improved distancing, masking, and hygiene practices. A second key question to follow during this time was whether clinical characteristics of the epidemic would improve after the initial surge of cases. Here, we analyze age-structured case, hospitalization, and death time series from three states - Rhode Island, Massachusetts, and Pennsylvania - that had successful re-openings in May 2020 without summer waves of infection. Using a Bayesian inference framework on eleven daily data streams and flexible daily population contact parameters, we show that population-average mixing rates dropped by >50% during the lockdown period in March/April, and that the correlation between overall population mobility and transmission-capable mobility was broken in May as these states partially re-opened. We estimate the reporting rates (fraction of symptomatic cases reporting to health system) at 96.0% (RI), 72.1% (MA), and 75.5% (PA); in Rhode Island, when accounting for cases caught through general-population screening programs, the reporting rate estimate is 94.5%. We show that elderly individuals were less able to reduce contacts during the lockdown period when compared to younger individuals. Attack rate estimates through August 31 2020 are 6.4% (95% CI: 5.8% ‒ 7.3%) of the total population infected for Rhode Island, 5.7% (95% CI: 5.0% ‒ 6.8%) in Massachusetts, and 3.7% (95% CI: 3.1% ‒ 4.5%) in Pennsylvania, with some validation available through published seroprevalence studies. Infection fatality rates (IFR) estimates for the spring epidemic are higher in our analysis (>2%) than previously reported values, likely resulting from the epidemics in these three states affecting the most vulnerable sub-populations, especially the most vulnerable of the ≥80 age group.

8.
BMC Med ; 19(1): 162, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34253200

RESUMO

BACKGROUND: When three SARS-CoV-2 vaccines came to market in Europe and North America in the winter of 2020-2021, distribution networks were in a race against a major epidemiological wave of SARS-CoV-2 that began in autumn 2020. Rapid and optimized vaccine allocation was critical during this time. With 95% efficacy reported for two of the vaccines, near-term public health needs likely require that distribution is prioritized to the elderly, health care workers, teachers, essential workers, and individuals with comorbidities putting them at risk of severe clinical progression. METHODS: We evaluate various age-based vaccine distributions using a validated mathematical model based on current epidemic trends in Rhode Island and Massachusetts. We allow for varying waning efficacy of vaccine-induced immunity, as this has not yet been measured. We account for the fact that known COVID-positive cases may not have been included in the first round of vaccination. And, we account for age-specific immune patterns in both states at the time of the start of the vaccination program. Our analysis assumes that health systems during winter 2020-2021 had equal staffing and capacity to previous phases of the SARS-CoV-2 epidemic; we do not consider the effects of understaffed hospitals or unvaccinated medical staff. RESULTS: We find that allocating a substantial proportion (>75%) of vaccine supply to individuals over the age of 70 is optimal in terms of reducing total cumulative deaths through mid-2021. This result is robust to different profiles of waning vaccine efficacy and several different assumptions on age mixing during and after lockdown periods. As we do not explicitly model other high-mortality groups, our results on vaccine allocation apply to all groups at high risk of mortality if infected. A median of 327 to 340 deaths can be avoided in Rhode Island (3444 to 3647 in Massachusetts) by optimizing vaccine allocation and vaccinating the elderly first. The vaccination campaigns are expected to save a median of 639 to 664 lives in Rhode Island and 6278 to 6618 lives in Massachusetts in the first half of 2021 when compared to a scenario with no vaccine. A policy of vaccinating only seronegative individuals avoids redundancy in vaccine use on individuals that may already be immune, and would result in 0.5% to 1% reductions in cumulative hospitalizations and deaths by mid-2021. CONCLUSIONS: Assuming high vaccination coverage (>28%) and no major changes in distancing, masking, gathering size, hygiene guidelines, and virus transmissibility between 1 January 2021 and 1 July 2021 a combination of vaccination and population immunity may lead to low or near-zero transmission levels by the second quarter of 2021.


Assuntos
Vacinas contra COVID-19/provisão & distribuição , COVID-19 , Controle de Doenças Transmissíveis/organização & administração , Alocação de Recursos para a Atenção à Saúde/organização & administração , Alocação de Recursos/organização & administração , Cobertura Vacinal , Vacinação , Fatores Etários , COVID-19/epidemiologia , COVID-19/prevenção & controle , Humanos , Incidência , Massachusetts/epidemiologia , Modelos Teóricos , Saúde Pública/métodos , Saúde Pública/normas , Rhode Island/epidemiologia , SARS-CoV-2 , Vacinação/métodos , Vacinação/estatística & dados numéricos , Cobertura Vacinal/estatística & dados numéricos , Cobertura Vacinal/provisão & distribuição
9.
J Biol Inorg Chem ; 26(5): 535-549, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34173882

RESUMO

Ruthenium (Ru) and osmium (Os) complexes are of sustained interest in cancer research and may be alternative to platinum-based therapy. We detail here three new series of ruthenium and osmium complexes, supported by physico-chemical characterizations, including time-dependent density functional theory, a combined experimental and computational study on the aquation reactions and the nature of the metal-arene bond. Cytotoxic profiles were then evaluated on several cancer cell lines although with limited success. Further investigations were, however, performed on the most active series using a genetic approach based on RNA interference and highlighted a potential multi-target mechanism of action through topoisomerase II, mitotic spindle, HDAC and DNMT inhibition.


Assuntos
Antineoplásicos/farmacologia , Biotina/farmacologia , Complexos de Coordenação/farmacologia , Morfolinas/farmacologia , Osmio/farmacologia , Rutênio/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Biotina/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Cristalografia por Raios X , Teoria da Densidade Funcional , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Modelos Moleculares , Estrutura Molecular , Morfolinas/química , Osmio/química , Rutênio/química
10.
medRxiv ; 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33469599

RESUMO

As three SARS-CoV-2 vaccines come to market in Europe and North America in the winter of 2020-2021, distribution networks will be in a race against a major epidemiological wave of SARS-CoV-2 that began in autumn 2020. Rapid and optimized vaccine allocation is critical during this time. With 95% efficacy reported for two of the vaccines, near-term public health needs require that distribution is prioritized to the elderly, health-care workers, teachers, essential workers, and individuals with co-morbidities putting them at risk of severe clinical progression. Here, we evaluate various age-based vaccine distributions using a validated mathematical model based on current epidemic trends in Rhode Island and Massachusetts. We allow for varying waning efficacy of vaccine-induced immunity, as this has not yet been measured. We account for the fact that known COVID-positive cases may not be included in the first round of vaccination. And, we account for current age-specific immune patterns in both states. We find that allocating a substantial proportion ( > 75%) of vaccine supply to individuals over the age of 70 is optimal in terms of reducing total cumulative deaths through mid-2021. As we do not explicitly model other high mortality groups, this result on vaccine allocation applies to all groups at high risk of mortality if infected. Our analysis confirms that for an easily transmissible respiratory virus, allocating a large majority of vaccinations to groups with the highest mortality risk is optimal. Our analysis assumes that health systems during winter 2020-2021 have equal staffing and capacity to previous phases of the SARS-CoV-2 epidemic; we do not consider the effects of understaffed hospitals or unvaccinated medical staff. Vaccinating only seronegative individuals avoids redundancy in vaccine use on individuals that may already be immune, and will result in 1% to 2% reductions in cumulative hospitalizations and deaths by mid-2021. Assuming high vaccination coverage ( > 28%) and no major relaxations in distancing, masking, gathering size, or hygiene guidelines between now and spring 2021, our model predicts that a combination of vaccination and population immunity will lead to low or near-zero transmission levels by the second quarter of 2021.

11.
Cell Rep ; 30(12): 3951-3963.e4, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32209458

RESUMO

Rationally designing drugs that last longer in the face of biological evolution is a critical objective of drug discovery. However, this goal is thwarted by the diversity and stochasticity of evolutionary trajectories that drive uncertainty in the clinic. Although biophysical models can qualitatively predict whether a mutation causes resistance, they cannot quantitatively predict the relative abundance of resistance mutations in patient populations. We present stochastic, first-principle models that are parameterized on a large in vitro dataset and that accurately predict the epidemiological abundance of resistance mutations across multiple leukemia clinical trials. The ability to forecast resistance variants requires an understanding of their underlying mutation biases. Beyond leukemia, a meta-analysis across prostate cancer, breast cancer, and gastrointestinal stromal tumors suggests that resistance evolution in the adjuvant setting is influenced by mutational bias. Our analysis establishes a principle for rational drug design: when evolution favors the most probable mutant, so should drug design.


Assuntos
Desenho de Fármacos , Resistencia a Medicamentos Antineoplásicos , Estudos Epidemiológicos , Alelos , Animais , Desenvolvimento de Medicamentos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Evolução Molecular , Humanos , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Camundongos , Modelos Biológicos , Mutação/genética , Proteínas Proto-Oncogênicas c-abl/genética , Sais/química , Processos Estocásticos
12.
Proc Natl Acad Sci U S A ; 117(8): 4053-4060, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32041867

RESUMO

Small molecules can affect many cellular processes. The disambiguation of these effects to identify the causative mechanisms of cell death is extremely challenging. This challenge impacts both clinical development and the interpretation of chemical genetic experiments. CX-5461 was developed as a selective RNA polymerase I inhibitor, but recent evidence suggests that it may cause DNA damage and induce G-quadraplex formation. Here we use three complimentary data mining modalities alongside biochemical and cell biological assays to show that CX-5461 exerts its primary cytotoxic activity through topoisomerase II poisoning. We then show that acquired resistance to CX-5461 in previously sensitive lymphoma cells confers collateral resistance to the topoisomerase II poison doxorubicin. Doxorubicin is already a frontline chemotherapy in a variety of hematopoietic malignancies, and CX-5461 is being tested in relapse/refractory hematopoietic tumors. Our data suggest that the mechanism of cell death induced by CX-5461 is critical for rational clinical development in these patients. Moreover, CX-5461 usage as a specific chemical genetic probe of RNA polymerase I function is challenging to interpret. Our multimodal data-driven approach is a useful way to detangle the intended and unintended mechanisms of drug action across diverse essential cellular processes.


Assuntos
Antineoplásicos/farmacologia , Benzotiazóis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Naftiridinas/farmacologia , Proteínas de Ligação a Poli-ADP-Ribose/antagonistas & inibidores , Linhagem Celular Tumoral , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , Relação Dose-Resposta a Droga , Doxorrubicina/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Linfoma , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Interferência de RNA , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...