Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 9(10): 3655, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28244541

RESUMO

Correction for 'Efficient planar n-i-p type heterojunction flexible perovskite solar cells with sputtered TiO2 electron transporting layers' by Sawanta S. Mali et al., Nanoscale, 2017, DOI: 10.1039/c6nr09032j.

2.
Nanoscale ; 9(9): 3095-3104, 2017 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-28195297

RESUMO

The development of hybrid organo-lead trihalide perovskite solar cells (PSCs) comprising an electron transporting layer (ETL), a perovskite light absorber and a hole transporting layer (HTL) has received significant attention for their potential in efficient PSCs. However, the preparation of a compact and uniform ETL and the formation of a uniform light absorber layer suffer from a high temperature processing treatment and the formation of unwanted perovskite islands, respectively. A low temperature/room temperature processed ETL is one of the best options for the fabrication of flexible PSCs. In the present work, we report the implementation of a room temperature processed compact TiO2 ETL and the synthesis of extremely uniform flexible planar PSCs based on methylammonium lead mixed halides MAPb(I1-xBrx)3 (x = 0.1) via RF-magnetron sputtering and a toluene dripping treatment, respectively. The compact TiO2 ETLs with different thicknesses (30 to 100 nm) were directly deposited on a flexible PET coated ITO substrate by varying the RF-sputtering time and used for the fabrication of flexible PSCs. The photovoltaic properties revealed that flexible PSC performance is strongly dependent on the TiO2 ETL thickness. The open circuit voltage (VOC) and fill factor (FF) are directly proportional to the TiO2 ETL thickness while the 50 nm thick TiO2 ETL shows the highest current density (JSC) of 20.77 mA cm-2. Our controlled results reveal that the room temperature RF-magnetron sputtered 50 nm-thick TiO2 ETL photoelectrode exhibits a power conversion efficiency (PCE) in excess of 15%. The use of room temperature synthesis of the compact TiO2 ETL by RF magnetron sputtering results in an enhancement of the device performance for cells prepared on flexible substrates. The champion flexible planar PSC based on this architecture exhibited a promising power conversion efficiency as high as 15.88%, featuring a high FF of 0.69 and VOC of 1.108 V with a negligible hysteresis under AM 1.5 G illumination. Furthermore, the mechanical bending stability revealed that the fabricated devices show stable PCE up to 200 bending cycles. The interface properties revealed that the 50 nm thick TiO2 ETL provides superior charge injection characteristics and low internal resistance. The present work provides a simplistic and reliable approach for the fabrication of highly efficient stable flexible perovskite solar cells.

3.
Sci Rep ; 6: 23930, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27033695

RESUMO

We investigate the resistive switching power from unipolar resistive switching current-voltage characteristics in various binary metal oxide films sandwiched by different metal electrodes, and find a universal feature (the so-called universality) in the switching power among these devices. To experimentally derive the switching power universality, systematic measurements of the switching voltage and current are performed, and neither of these correlate with one another. As the switching resistance (R) increases, the switching power (P) decreases following a power law P ∝ R(-ß), regardless of the device configurations. The observed switching power universality is indicative of the existence of a commonly applicable switching mechanism. The origin of the power universality is discussed based on a metallic filament model and thermo-chemical reaction.

4.
Nanotechnology ; 19(32): 325706, 2008 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-21828828

RESUMO

Zinc oxide (ZnO) thin films were electrodeposited from an aqueous zinc acetate solution onto fluorine-doped thin oxide (FTO) coated conducting glass substrates. The effect of organic surfactants like polyvinyl pyrrolidone (PVP), sodium dodecyl sulfate (SDS), polyethylene glycol (PEG), ethylene glycol (EG) and polyvinyl alcohol (PVA) on their structural, morphological, optical and photoelectrochemical properties was studied. The x-ray diffraction patterns revealed the formation of phase-pure ZnO thin films. The films deposited using organic surfactants exhibit different surface morphologies. It was observed that the organic surfactants play important roles in modifying the surface morphology and size of the crystallites. A compact granular morphology was observed for the ZnO samples grown without organic surfactants. The films exhibit nanoparticles of size 100-150 nm for PVP, EG and PVA mediated growth. The vertically aligned thin and compact hexagonal crystallites stem from the SDS, whereas microporous corrugated morphology is observed for PEG-mediated growth. All the samples exhibit room temperature photoluminescence (PL). Oxygen vacancies contribute to the active luminescent centers for the emission of green light in ZnO thin films. PL gets quenched for the SDS surfactant. All the samples were post-treated with ethanol to remove stray surfactant molecules. FTIR study was used to confirm the removal of adsorbed surfactant molecules from the samples. Moreover the samples are photoelectrochemically (PEC) active and exhibit the highest photocurrent of 231 µA, a photovoltage of 492 mV and 0.42 fill factor for the ZnO:SDS films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...