Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(23)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38063772

RESUMO

Double perovskites are known for their special structures which can be utilized as catalyst electrode materials for electrochemical water splitting to generate carbon-neutral hydrogen energy. In this work, we prepared lanthanide series metal-doped double perovskites at the M site such as M2NiMnO6 (where M = Eu, Gd, Tb) using the solid-state reaction method, and they were investigated for an oxygen evolution reaction (OER) study in an alkaline medium. It is revealed that the catalyst with a configuration of Tb2NiMnO6 has outstanding OER properties such as a low overpotential of 288 mV to achieve a current density of 10 mAcm-2, a lower Tafel slope of 38.76 mVdec-1, and a long cycling stability over 100 h of continuous operation. A-site doping causes an alteration in the oxidation or valence states of the NiMn cations, their porosity, and the oxygen vacancies. This is evidenced in terms of the Mn4+/Mn3+ ratio modifying electronic properties and the surface which facilitates the OER properties of the catalyst. This is discussed using electrochemical impedance spectroscopy (EIS) and electrochemical surface area (ECSA) of the catalysts. The proposed work is promising for the synthesis and utilization of future catalyst electrodes for high-performance electrochemical water splitting.

2.
Membranes (Basel) ; 13(9)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37755170

RESUMO

Layered double hydroxides (LDHs) have gained vast importance as an electrocatalyst for water electrolysis to produce carbon-neutral and clean hydrogen energy. In this work, we demonstrated the fabrication of nano-flake-like NiMn LDH thin film electrodes onto porous membrane-like Ni-foam by using a simple and cost-effective electrodeposition method for oxygen evolution reaction (OER). Various Ni1-xMnx LDH (where x = 0.15, 0.25, 0.35, 0.50 and 0.75) thin film electrodes are utilized to achieve the optimal catalyst for an efficient and sustainable OER process. The various composition-dependent surface morphologies and porous-membrane-like structure provided the high electrochemical surface area along with abundant active sites facilitating the OER. The optimized catalyst referred to as Ni0.65Mn0.35 showed excellent OER properties with an ultralow overpotential of 253 mV at a current density of 50 mAcm-2, which outperforms other state-of-the art catalysts reported in the literature. The relatively low Tafel slope of 130 mV dec-1 indicates faster and more favorable reaction kinetics for OER. Moreover, Ni0.65Mn0.35 exhibits excellent durability over continuous operation of 20 h, indicating the great sustainability of the catalyst in an alkaline medium. This study provides knowledge for the fabrication and optimization of the OER catalyst electrode for water electrolysis.

3.
Dalton Trans ; 52(39): 13852-13857, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37772345

RESUMO

The doping of metal-organic frameworks (MOFs) with metal-ions has emerged as a powerful strategy for enhancing their catalytic performance. Doping allows for the tailoring of the electronic structure and local coordination environment of MOFs, thus imparting on them unique properties and enhanced functionalities. This frontier article discusses the impact of metal-ion doping on the electronic structure and local coordination of MOFs, highlighting the effects on their electrocatalytic properties in relation to the oxygen evolution reaction (OER). The fundamental mechanisms underlying these modifications are explored, while recent advances, challenges, and prospects in the field are discussed. In addition, experimental techniques that can be applied to tackle the realization of effective metal-ion doping of MOFs are also noted briefly.

4.
Dalton Trans ; 52(34): 12020-12029, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37581273

RESUMO

Operating temperatures considerably influence the energy storage mechanism of the anode of Li-ion batteries (LiBs). This effect must be comprehensively studied to facilitate the effective integration of LiBs in practical applications and battery management. In this study, we fabricated a novel anode material, i.e., copper-iron-tin-sulphide (Cu2FeSnS4, CFTS), and investigated the corresponding LiB performance at operating temperatures ranging from 10 °C to 55 °C. The CFTS anode exhibited a discharge capacity of 283.1 mA h g-1 at room temperature (25 °C), which stabilized to 174.0 mA h g-1 in repeated cycles tested at a current density of 0.1 A g-1. The discharge capacity at higher operating temperatures, such as 40 °C and 55 °C, is found to be 209.3 and 230.0 mA h g-1 respectively. In contrast, the discharge capacity decreased to 36.2 mA h g-1 when the temperature decreased to 10 °C. Electrothermal impedance spectroscopy was performed to determine the rate of chemical reactions, mobility of active species, and change in internal resistance at different operating temperatures. In terms of the cycle life, CFTS exhibited outstanding cycling stability for more than 500 charge/discharge cycles, with a 146% capacity retention and more than 80% coulombic efficiency. The electrochemical investigation revealed that the charge storage in the CFTS anode is attributable to capacitive-type and diffusion-controlled mechanisms.

5.
Dalton Trans ; 52(31): 10933-10941, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37490008

RESUMO

This work reports a promising and sustainable method for valorization of abundantly available biomass feedstocks to overcome the thermodynamic high energy barrier of the OER via glucose electrolysis as a proxy anodic reaction, thereby driving the energy-efficient water splitting for green hydrogen generation. For this, a robust and efficient MIL-88B(Fe) based electrocatalyst is engineered via Cu doping. The ultrasonically prepared Cu-doped@ MIL-88B ink when drop-cast on nickel foam (NF) produces thin nano-porous 2D-sheet like films having a thickness of ca. 300 nm and demonstrates an excellent glucose oxidation reaction (GOR) with a lower potential of 1.35 V versus RHE at 10 mA cm-2. In addition, this electrode shows outstanding long-term electrochemical durability for 50 h and exhibits the maximum GOR current load of 350 mA cm-2 at 1.48 V vs. RHE, while the pristine MIL-88B based electrode exhibits a current load of only 180 mA cm-2 at the same potential bias. The remarkably higher current density after doping indicates an accelerated GOR, which is ascribed to the electronic structure modulation of the Fe nodes by Cu, thereby enhancing the active sites and charge transport characteristics of the frameworks. Most importantly, the MOF-based electrodes demonstrate the occurrence of the GOR prior to the OER at a large potential difference, hence assisting the energy-efficient water splitting for green hydrogen production.

6.
Front Microbiol ; 14: 1086962, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36876058

RESUMO

Microbial fuel cells (CS-UFC) utilize waste resources containing biodegradable materials that play an essential role in green energy. MFC technology generates "carbon-neutral" bioelectricity and involves a multidisciplinary approach to microbiology. MFCs will play an important role in the harvesting of "green electricity." In this study, a single-chamber urea fuel cell is fabricated that uses these different wastewaters as fuel to generate power. Soil has been used to generate electrical power in microbial fuel cells and exhibited several potential applications to optimize the device; the urea fuel concentration is varied from 0.1 to 0.5 g/mL in a single-chamber compost soil urea fuel cell (CS-UFC). The proposed CS-UFC has a high power density and is suitable for cleaning chemical waste, such as urea, as it generates power by consuming urea-rich waste as fuel. The CS-UFC generates 12 times higher power than conventional fuel cells and exhibits size-dependent behavior. The power generation increases with a shift from the coin cell toward the bulk size. The power density of the CS-UFC is 55.26 mW/m2. This result confirmed that urea fuel significantly affects the power generation of single-chamber CS-UFC. This study aimed to reveal the effect of soil properties on the generated electric power from soil processes using waste, such as urea, urine, and industrial-rich wastewater as fuel. The proposed system is suitable for cleaning chemical waste; moreover, the proposed CS-UFC is a novel, sustainable, cheap, and eco-friendly design system for soil-based bulk-type design for large-scale urea fuel cell applications.

7.
Dalton Trans ; 51(38): 14535-14544, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36073276

RESUMO

In everyday life, superior lithium-ion batteries (LIBs), with fast charging ability, have become valuable assets. The LIB performance of an anode composite copper cobalt tin sulphide (Cu2CoSnS4; CCTS) electrode, which was fabricated using a simple and easy hydrothermal method, was investigated. The electrochemical charge storage performance of the CCTS anode demonstrated sustainability, high-rate capability and efficiency. The CCTS anode exhibited a first discharge capacity of 914.5 mA h g-1 and an average specific capacity of 198.7 mA h g-1 in consecutive cycles at a current density of 0.1 A g-1. It had a capacity retention of ∼62.0% and a coulombic efficiency of more than 83% after over 100 cycles, demonstrating its excellent cycling performance and reversibility. It can be an alternative anode to other established electrode materials for real battery applications.

8.
Nanomaterials (Basel) ; 12(11)2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35683771

RESUMO

Developing efficient electrocatalysts for urea oxidation reaction (UOR) can be a promising alternative strategy to substitute the sluggish oxygen evolution reaction (OER), thereby producing hydrogen at a lower cell-voltage. Herein, we synthesized a binder-free thin film of ultrathin sheets of bimetallic Cu-Fe-based metal-organic frameworks (Cu/Fe-MOFs) on a nickel foam via a drop-casting route. In addition to the scalable route, the drop-casted film-electrode demonstrates the lower UOR potentials of 1.59, 1.58, 1.54, 1.51, 1.43 and 1.37 V vs. RHE to achieve the current densities of 2500, 2000, 1000, 500, 100 and 10 mA cm-2, respectively. These UOR potentials are relatively lower than that acquired by the pristine Fe-MOF-based film-electrode synthesized via a similar route. For example, at 1.59 V vs. RHE, the Cu/Fe-MOF electrode exhibits a remarkably ultra-high anodic current density of 2500 mA cm-2, while the pristine Fe-MOF electrode exhibits only 949.10 mA cm-2. It is worth noting that the Cu/Fe-MOF electrode at this potential exhibits an OER current density of only 725 mA cm-2, which is far inconsequential as compared to the UOR current densities, implying the profound impact of the bimetallic cores of the MOFs on catalyzing UOR. In addition, the Cu/Fe-MOF electrode also exhibits a long-term electrochemical robustness during UOR.

9.
Dalton Trans ; 51(23): 8994-9006, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35622073

RESUMO

Green hydrogen derived from the water-electrolysis route is emerging as a game changer for achieving global carbon neutrality. Economically producing hydrogen through water electrolysis, however, requires the development of low-cost and highly efficient electrocatalysts via scalable synthetic strategies. Herein, this work reports a simple and scalable immersion synthetic strategy to deposit reduced graphene oxide (rGO) nanosheets integrated with Ni-Fe-based hydroxide nanocatalysts on nickel foam (NF) at room temperature. As a result of synergetic interactions among the hydroxides, rGO and NF, enhanced catalytic sites with improved charge transport between the electrode and electrolyte were perceived, resulting in significantly enhanced oxygen evolution reaction (OER) activity with low overpotentials of 270 and 320 mV at 100 and 500 mA cm-2, respectively, in a 1.0 M KOH aqueous electrolyte. This performance is superior to those of the hydroxide-based electrode without incorporating rGO and the IrO2-benchmark electrode. Furthermore, when the conventional OER is substituted with urea decomposition (UOR) as a proxy anodic reaction, the electrolyzer achieves 100 and 500 mA cm-2 at a lower potential by 150 and 120 mV, respectively than the OER counterpart without influencing the hydrogen evolution reaction (HER) activity at the cathode. Notably, the rGO-incorporated electrode delivers a spectacularly high UOR current density of 1600 mA cm-2 at 1.53 V vs. RHE, indicating the decomposition of urea at an outstandingly high rate.

10.
Nanomaterials (Basel) ; 12(8)2022 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35457989

RESUMO

Ammonium toxicity is a significant source of pollution from industrial civilization that is disrupting the balance of natural systems, adversely affecting soil and water quality, and causing several environmental problems that affect aquatic and human life, including the strong promotion of eutrophication and increased dissolved oxygen consumption. Thus, a cheap catalyst is required for power generation and detoxification. Herein, compost soil is employed as a novel electrocatalyst for ammonium degradation and high-power generation. Moreover, its effect on catalytic activity and material performances is systematically optimized and compared by treating it with various reducing agents, including potassium ferricyanide, ferrocyanide, and manganese dioxide. Ammonium fuel was supplied to the compost soil ammonium fuel cell (CS-AFC) at concentrations of 0.1, 0.2, and 0.3 g/mL. The overall results show that ferricyanide affords a maximum power density of 1785.20 mW/m2 at 0.2 g/mL fuel concentration. This study focuses on high-power generation for CS-AFC. CS-AFCs are sustainable for many hours without any catalyst deactivation; however, they need to be refueled at regular intervals (every 12 h). Moreover, CS-AFCs afford the best performance when ferricyanide is used as the electron acceptor at the cathode. This study proposes a cheap electrocatalyst and possible solutions to the more serious energy generation problems. This study will help in recycling ammonium-rich wastewaters as free fuel for running CS-AFC devices to yield high-power generation with reducing agents for ammonium fuel cell power applications.

11.
ACS Appl Mater Interfaces ; 13(48): 57403-57410, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34806376

RESUMO

The use of electrodes capable of functioning as both electrochromic windows and energy storage devices has been extended from green building development to various electronics and displays to promote more efficient energy consumption. Herein, we report the electrochromic energy storage of bimetallic NiV oxide (NiVO) thin films fabricated using chemical bath deposition. The best optimized NiVO electrode with a Ni/V ratio of 3 exhibits superior electronic conductivity and a large electrochemical surface area, which are beneficial for enhancing electrochemical performance. The color switches between semitransparent (a discharged state) and dark brown (a charged state) with excellent reproducibility because of the intercalation and deintercalation of OH- ions in an alkaline KOH electrolyte. A specific capacity of 2403 F g-1, a coloration efficiency of 63.18 cm2 C-1, and an outstanding optical modulation of 68% are achieved. The NiVO electrode also demonstrates ultrafast coloration and bleaching behavior (1.52 and 4.79 s, respectively), which are considerably faster than those demonstrated by the NiO electrode (9.03 and 38.87 s). It retains 91.95% capacity after 2000 charge-discharge cycles, much higher than that of the NiO electrode (83.47%), indicating that it has significant potential for use in smart energy storage applications. The superior electrochemical performance of the best NiVO compound electrode with an optimum Ni/V compositional ratio is due to the synergetic effect between the high electrochemically active surface area induced by V-doping-improved redox kinetics (low charge-transfer resistance) and fast ion diffusion, which provides a facile charge transport pathway at the electrolyte/electrode interface.

12.
Sci Rep ; 10(1): 4154, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32139783

RESUMO

The acute problem of eutrophication increasing in the environment is due to the increase of industrial wastewater, synthetic nitrogen, urine, and urea. This pollutes groundwater, soil and creates a danger to aquatic life. Therefore, it is advantageous to use these waste materials in the form of urea as fuel to generate power using Microbial Fuel Cell (MFC). In this work, we studied the compost soil MFC(CSMFC) unlike typical MFC with urea from the compost as fuel and graphite as a functional electrode. The electrochemical techniques such as Cyclic Voltammetry, Chronoamperometry are used to characterise CSMFC. It is observed that the CSMFC in which the compost consists of urea concertation of 0.5 g/ml produces maximum power. Moreover, IV measurement is carried out using polarization curves in order to study its sustainability and scalability. Bacterial studies were also playing a significant role in power generation. The sustainability study revealed that urea is consumed in CSMFC to generate power. This study confirmed that urea has a profound effect on the power generation from the CSMFC. Our focus is to get power from the soil processes in future by using waste like urine, industrial wastewater, which contains much amount of urea.

13.
Small ; 16(2): e1905884, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31762207

RESUMO

To generate hydrogen, which is a clean energy carrier, a combination of electrolysis and renewable energy sources is desirable. In particular, for both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in electrolysis, it is necessary to develop nonprecious, efficient, and durable catalysts. A robust nonprecious copper-iron (CuFe) bimetallic composite is reported that can be used as a highly efficient bifunctional catalyst for overall water splitting in an alkaline medium. The catalyst exhibits outstanding OER and HER activity, and very low OER and HER overpotentials (218 and 158 mV, respectively) are necessary to attain a current density of 10 mA cm-2 . When used in a two-electrode water electrolyzer system for overall water splitting, it not only achieves high durability (even at a very high current density of 100 mA cm-2 ) but also reduces the potential required to split water into oxygen and hydrogen at 10 mA cm-2 to 1.64 V for 100 h of continuous operation.

14.
Nanomaterials (Basel) ; 9(7)2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31340552

RESUMO

The nanocomposites of activated-carbon-decorated silicon nanocrystals (ACAC) were synchronously derived in a single step from biomass rice husks, through the simple route of the calcination method together with the magnesiothermic reduction process. The final product, ACAC, exhibited an aggregated structure of activated-carbon-encapsulated nanocrystalline silicon spheres, and reveals a high specific surface area (498.5 m2/g). Owing to the mutualization of advantages from both silicon nanocrystals (i.e., low discharge potential and high specific capacity) and activated carbon (i.e., high porosity and good electrical conductivity), the ACAC nanocomposites are able to play a substantial role as an anodic source material for the lithium-ion battery (LIB). Namely, a high coulombic efficiency (97.5%), a high discharge capacity (716 mAh/g), and a high reversible specific capacity (429 mAh/g after 100 cycles) were accomplished when using ACAC as an LIB anode. The results advocate that the simultaneous synthesis of biomass-derived ACAC is beneficial for green energy-storage device applications.

15.
Small ; 14(49): e1703481, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30371003

RESUMO

The oxygen-evolution reaction (OER) is critical in electrochemical water splitting and requires an efficient, sustainable, and cheap catalyst for successful practical applications. A common development strategy for OER catalysts is to search for facile routes for the synthesis of new catalytic materials with optimized chemical compositions and structures. Here, nickel hydroxide Ni(OH)2 2D nanosheets pillared with 0D polyoxovanadate (POV) nanoclusters as an OER catalyst that can operate in alkaline media are reported. The intercalation of POV nanoclusters into Ni(OH)2 induces the formation of a nanoporous layer-by-layer stacking architecture of 2D Ni(OH)2 nanosheets and 0D POV with a tunable chemical composition. The nanohybrid catalysts remarkably enhance the OER activity of pristine Ni(OH)2 . The present findings demonstrate that the intercalation of 0D POV nanoclusters into Ni(OH)2 is effective for improving water oxidation catalysis and represents a potential method to synthesize novel, porous hydroxide-based nanohybrid materials with superior electrochemical activities.

16.
Small ; 14(28): e1800742, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29882393

RESUMO

CuCo2 O4 films with different morphologies of either mesoporous nanosheets, cubic, compact-granular, or agglomerated embossing structures are fabricated via a hydrothermal growth technique using various solvents, and their bifunctional activities, electrochemical energy storage and oxygen evolution reaction (OER) for water splitting catalysis in strong alkaline KOH media, are investigated. It is observed that the solvents play an important role in setting the surface morphology and size of the crystallites by controlling nucleation and growth rate. An optimized mesoporous CuCo2 O4 nanosheet electrode shows a high specific capacitance of 1658 F g-1 at 1 A g-1 with excellent restoring capability of ≈99% at 2 A g-1 and superior energy density of 132.64 Wh kg-1 at a power density of 0.72 kW kg-1 . The CuCo2 O4 electrode also exhibits excellent endurance performance with capacity retention of 90% and coulombic efficiency of ≈99% after 5000 charge/discharge cycles. The best OER activity is obtained from the CuCo2 O4 nanosheet sample with the lowest overpotential of ≈290 mV at 20 mA cm-2 and a Tafel slope of 117 mV dec-1 . The superior bifunctional electrochemical activity of the mesoporous CuCo2 O4 nanosheet is a result of electrochemically favorable 2D morphology, which leads to the formation of a very large electrochemically active surface area.

17.
Nanoscale ; 10(19): 8953-8961, 2018 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-29634061

RESUMO

A mesoporous nanoplate network of two-dimensional (2D) layered nickel hydroxide Ni(OH)2 intercalated with polyoxovanadate anions (Ni(OH)2-POV) was built using a chemical solution deposition method. This approach will provide high flexibility for controlling the chemical composition and the pore structure of the resulting Ni(OH)2-POV nanohybrids. The layer-by-layer ordered growth of the Ni(OH)2-POV is demonstrated by powder X-ray diffraction and cross-sectional high-resolution transmission electron microscopy. The random growth of the intercalated Ni(OH)2-POV nanohybrids leads to the formation of an interconnected network morphology with a highly porous stacking structure whose porosity is controlled by changing the ratio of Ni(OH)2 and POV. The lateral size and thickness of the Ni(OH)2-POV nanoplates are ∼400 nm and from ∼5 nm to 7 nm, respectively. The obtained thin films are highly active electrochemical capacitor electrodes with a maximum specific capacity of 1440 F g-1 at a current density of 1 A g-1, and they withstand up to 2000 cycles with a capacity retention of 85%. The superior electrochemical performance of the Ni(OH)2-POV nanohybrids is attributed to the expanded mesoporous surface area and the intercalation of the POV anions. The experimental findings highlight the outstanding electrochemical functionality of the 2D Ni(OH)2-POV nanoplate network that will provide a facile route for the synthesis of low-dimensional hybrid nanomaterials for a highly active supercapacitor electrode.

18.
Data Brief ; 14: 453-457, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28831407

RESUMO

The dataset presented here is related to the research article entitled "Highly Efficient Electro-optically Tunable Smart-supercapacitors Using an Oxygen-excess Nanograin Tungsten Oxide Thin Film" (Akbar et al., 2017) [9] where we have presented a nanograin WO3 film as a bifunctional electrode for smart supercapacitor devices. In this article we provide additional information concerning nanograin tungsten oxide thin films such as atomic force microscopy, Raman spectroscopy, and X-ray diffraction spectroscopy. Moreover, their electrochemical properties such as cyclic voltammetry, electrochemical supercapacitor properties, and electrochromic properties including coloration efficiency, optical modulation and electrochemical impedance spectroscopy are presented.

19.
ACS Appl Mater Interfaces ; 8(27): 17220-5, 2016 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-27322601

RESUMO

We report an efficient method for growing NiO nanostructures by oblique angle deposition (OAD) technique in an e-beam evaporator for supercapacitor applications. This facile physical vapor deposition technique combined with OAD presents a unique, direct, and economical route for obtaining high width-to-height ratio nanorods for supercapacitor electrodes. The NiO nanostructure essentially consists of nanorods with varying dimensions. The sample deposited at OAD 75° showed highest supercapacitance value of 344 F/g. NiO nanorod electrodes exhibits excellent electrochemical stability with no degradation in capacitance after 5000 charge-discharge cycles. The nanostructured film adhered well to the substrate and had 131% capacity retention. Peak energy density and power density of the NiO nanorods were 8.78 Wh/kg and 2.5 kW/kg, respectively. This technique has potential to be expanded for growing nanostructured films of other interesting metal/metal oxide candidates for supercapacitor applications.

20.
ACS Appl Mater Interfaces ; 8(14): 9499-505, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-27007722

RESUMO

This study investigates the transport and switching time of nonvolatile tungsten oxide based resistive-switching (RS) memory devices. These devices consist of a highly resistive tungsten oxide film sandwiched between metal electrodes, and their RS characteristics are bipolar in the counterclockwise direction. The switching voltage, retention, endurance, and switching time are strongly dependent on the type of electrodes used, and we also find quantitative and qualitative evidence that the electronegativity (χ) of the electrodes plays a key role in determining the RS properties and switching time. We also propose an RS model based on the role of the electronegativity at the interface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...