Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Res (Camb) ; 12(3): 503-506, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37397930

RESUMO

N-Nitrosamines are well known as environmental carcinogens. We have reported that N-nitroso-N-methylbutylamine was oxidized by Fe2+-Cu2+-H2O2 to 5-methyl-5-nitro-1-pyrazoline, a direct-acting N-oxide. 1-Pyrazolines have not been reported to exhibit genotoxicity. In this study, we investigated the effect of N-oxidation on the mutagenicity of 1-pyrazolines using the Ames assay. The mutagenicity of 5-alkyl-5-nitro-1-pyrazoline 1-oxide (1a; methyl, 1b; ethyl), the N-oxide isomer (3-alkyl-3-nitro-1-pyrazoline 1-oxide; 2a; methyl, 2b; ethyl), and the corresponding nonoxides (3-alkyl-3-nitro-1-pyrazoline; 3a; methyl, 3b; ethyl) was assayed in Salmonella typhimurium TA1535 and Escherichia coli WP2uvrA. The ratios of mutagenic potency in S. typhimurium TA1535 versus E. coli WP2uvrA were compared with those of N-alkylnitrosoureas. To predict the reaction site on the pyrazolines with nucleophiles, the electron density of the pyrazolines was obtained by theoretical calculations. The pyrazolines were mutagenic in S. typhimurium TA1535 and E. coli WP2uvrA. The ratio of S. typhimurium TA1535 to E. coli WP2uvrA 1a (87:13) or 1b (90:10) was similar to that of N-ethyl-N-nitrosourea (70:30). In contrast, the mutagenic ratio of 2a (22:78) or 2b (52:48) was similar to that of N-propyl-N-nitrosourea (48:52) or N-butyl-N-nitrosourea (14:86). The ratio of 3a (53:47) or 3b (54:46) was similar to that of N-propyl-N-nitrosourea or N-butyl-N-nitrosourea. The pyrazolines exhibit genotoxicity, and the mutagenic potency of the 1-pyrazolines is influenced by N-oxidation. We estimated that the mutagenicity of 1a or 1b was caused by DNA ethylation, and the isomers or the nonoxides were mutagenic via formation of alkylated DNA, which contains an alkyl chain longer than the propyl.

2.
Genes Environ ; 41: 22, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31890055

RESUMO

BACKGROUND: An extract from Spatholobus suberectus (S. suberectus) Dunn has been reported to show potent antimutagenic effects against N-alkyl-N-nitrosoureas in umu screening. The aim of this study was to identify the antimutagenic components from extracts of S. suberectus against N-methyl-N-nitrosourea (MNU) in the Ames assay with Salmonella typhimurium strain TA1535 and to elucidate the antimutagenic mechanism of the flavonoids. RESULTS: From the ethyl acetate fraction obtained from fractionation of the methanol extract of S. suberectus Dunn, medicarpin, formononetin and isoliquiritigenin were successfully isolated through a combination of normal- and reversed-phase chromatography. Genistein and naringenin, which were already reported to be contained in S. suberectus Dunn, were also tested for their antimutagenicity towards MNU, along with formononetin, isoliquiritigenin and medicarpin. Our results demonstrated that genistein, isoliquiritigenin, medicarpin and naringenin were antimutagenic against MNU without showing cytotoxicity. MNU is reported to cause not only DNA alkylation but also induce reactive oxygen species. The hydroxyl radical scavenging capacity of the flavonoids was correlated with the antimutagenic capacity, indicating that the hydroxyl radical scavenging activity was involved in their antimutagenicity towards MNU. CONCLUSIONS: It is important to prevent DNA damage by N-nitrosamines for cancer chemoprevention. Genistein, isoliquiritigenin, medicarpin and naringenin were demonstrated to possess an antigenotoxic effects against carcinogenic MNU due to their radical scavenging activity.

3.
Genes Environ ; 39: 5, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28074112

RESUMO

BACKGROUND: A powdered ethanolic extract of Glycyrrhiza aspera root exhibits antimutagenic activity against N-methyl-N-nitrosourea (MNU) based on the Ames assay with Salmonella typhimurium TA1535. The aim of this study was to identify the antimutagenic components of the powdered ethanolic extract of G. aspera root. RESULTS: The powdered ethanolic extract of G. aspera root was sequentially suspended in n-hexane, carbon tetrachloride, dichloromethane, ethyl acetate, and ethanol, and each solvent soluble fraction and the residue were assayed for antimutagenic activity against MNU in S. typhimurium TA1535. The dichloromethane soluble fraction exhibited the highest antimutagenicity and was fractionated several times by silica gel chromatography. The fraction with the highest antimutagenic activity was further purified using HPLC, and the fractions were assayed for antimutagenicity against MNU in S. typhimurium TA1535. Finally, five components with antimutagenic activity against MNU were identified as glyurallin A, glyasperin B, licoricidin, 1-methoxyphaseollin, and licoisoflavone B. CONCLUSIONS: The five components were demonstrated to possess an antigenotoxic effect against carcinogenic MNU for the first time. It is important to prevent DNA damage by N-nitrosamines for cancer chemoprevention.

4.
Toxicol Res (Camb) ; 6(2): 173-178, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30090487

RESUMO

Acetone alkylhydrazones have been reported to be mutagenic in Salmonella typhimurium TA1535 after exposure to oxygen, and the corresponding 2-alkylazo-2-propyl hydroperoxides are formed by autoxidation as a result. The aims of this study were to investigate the mutagenic mechanisms of a methyl analogue, 2-methylazo-2-propyl hydroperoxide (MAPH), by comparing the mutagenic potency of specific Salmonella strains, detecting the DNA adducts that cause mutagenicity, and observing the hydroxyl radical and methyl radical with the electron spin resonance (ESR) spin-trapping method. MAPH showed stronger mutagenicity in both Salmonella typhimurium YG3001, a strain sensitive to hydroxyl radicals, and Salmonella typhimurium YG7108, a strain sensitive to alkylating agents, than the original Salmonella typhimurium TA1535 strain. Moreover, MAPH resulted in the formation of 8-hydroxy-2'-deoxyguanosine and O6-methyl-2'-deoxyguanosine in a reaction with DNA. These results showed that the mutagenicity of hydrazones was ascribed to the generation of reactive species by autoxidation, namely that of the alkyldiazonium ion and also the hydroxyl radical.

5.
Nat Prod Res ; 31(6): 691-695, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27466044

RESUMO

Antimutagenesis against N-nitroso compounds contribute to prevention of human cancer. We have found that Glycyrrhiza aspera ethanolic extract exhibits antimutagenic activity against N-methyl-N-nitrosourea (MNU) using the Ames assay with Salmonella typhimurium TA1535. In the present study, eight purified components from Glycyrrhiza, namely glabridin, glycyrrhetinic acid, glycyrrhizin, licochalcone A, licoricesaponin H2, licoricesaponin G2, liquiritigenin and liquiritin were evaluated for their antimutagenicity against MNU in the Ames assay with S. typhimurium TA1535. Glycyrrhetinic acid, glycyrrhizin, licoricesaponin G2, licoricesaponin H2 and liquiritin did not show the antimutagenicity against MNU in S. typhimurium TA1535. Glabridin, licochalcone A and liquiritigenin reduced revertant colonies derived from MNU in S. typhimurium TA1535 without showing cytotoxic effects, indicating that these compounds possess antimutagenic activity against MNU. The inhibitory activity of glabridin and licochalcone A was more effective than that of liquiritigenin. Thus, Glycyrrhiza contains antimutagenic components against DNA alkylating, direct-acting carcinogens.


Assuntos
Antimutagênicos/farmacologia , Glycyrrhiza/química , Metilnitrosoureia/toxicidade , Mutagênicos/toxicidade , Alquilação , Antioxidantes/farmacologia , Etanol , Humanos , Testes de Mutagenicidade , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética , Solventes
6.
Bioorg Med Chem ; 23(20): 6733-9, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26386820

RESUMO

S-Nitrosoglutathione (GSNO) relaxes vascular smooth muscles, prevents platelet aggregation, and acts as a potential in vivo nitric oxide donor. 3-Nitroso-1,3-thiazolidine-4-thiocarboxamide (1), a N-nitrosothio-proline analogue, exhibited a high GSNO formation activity. In this study, two compounds (2 and 3) based on compound 1 were newly synthesized by introducing either one or two methyl groups onto a nitrogen atom on the thioamide substituent in 1. The pseudo-first-order rate constants (kobs) for the GSNO formation for the reaction between the compound and glutathione followed the order 1>2≒3. Thus, the introduction of a methyl group(s) onto the thioamide group led to a decrease in the transnitrosation activity. On the basis of density functional theoretical calculations, the transnitrosation for the N-nitrosothiazolidine thiocarboxamides was proposed to proceed via a bridged intermediate pathway. Specifically, the protonated compound 1 forms a bridged structure between the nitrogen atom in the nitroso group and two sulfur atoms-one in the ring and the other in the substituent. The bridged intermediate gives rise to a second intermediate in which the nitroso group is bonded to the sulfur atom in the thioamide group. Finally, the nitroso group is transferred to GSH to form GSNO.


Assuntos
Compostos Nitrosos/síntese química , Tiazóis/síntese química , Tiazolidinas/síntese química , Concentração de Íons de Hidrogênio , Cinética , Estrutura Molecular , Nitrosação , Compostos Nitrosos/química , Teoria Quântica , Tiazóis/química , Tiazolidinas/química
7.
Bioorg Med Chem ; 23(13): 3297-302, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25975641

RESUMO

N-Nitroso-N-methylurea (NMU) is a potent carcinogen and suspected as a cause of human cancer. In this study, mutagenic NMU was detected by HPLC after the transnitrosation of non-mutagenic N-nitrosoproline (NP) to N-methylurea in the presence of thiourea (TU) under acidic conditions. The structure of NMU was confirmed by comparing (1)H NMR and IR spectra with that of authentic NMU after fractionation by column chromatography. Furthermore, a fraction containing NMU formed by transnitrosation was mutagenic in Salmonella typhimurium TA1535. NMU was formed in the reaction of NP and N-methylurea in the presence of 1,1,3,3-tetramethylthiourea (TTU) or 1,3-dimethylthiourea in place of TU as an accelerator. The reaction rate constants (k) for NMU formation were correlated with their nucleophilicity of sulfur atom in thioureas. The N-methylurea concentration did not affect the NMU formation, whereas the rate of NMU formation correlated linearly with concentrations of NP, TTU and oxonium ion. The observed kinetics suggests a mechanism by which the nitroso group was transferred directly from the protonated NP to the thiourea then to N-methylurea to form NMU. The rate-determining step was the formation of the complex with the protonated NP and thiourea.


Assuntos
DNA Bacteriano/genética , Metilnitrosoureia/química , Mutagênicos/química , Nitrosaminas/química , Prótons , Humanos , Cinética , Metilnitrosoureia/toxicidade , Compostos de Metilureia/química , Mutagênicos/toxicidade , Mutação , Nitrosação , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética , Tioureia/análogos & derivados , Tioureia/química
8.
Cell Struct Funct ; 39(1): 61-77, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24492625

RESUMO

Protein Kinase D (PKD) 1, 2, and 3 are members of the PKD family. PKDs influence many cellular processes, including cell polarity, structure of the Golgi, polarized transport from the Golgi to the basolateral plasma membrane, and actin polymerization. However, the role of the PKD family in cell polarity has not yet been elucidated in vivo. Here, we show that KO mice displayed similar localization of the apical and basolateral proteins, transport of VSV-G and a GPI-anchored protein, and similar localization of actin filaments. As DKO mice were embryonic lethal, we generated MEFs that lacked all PKD isoforms from the PKD1 and PKD2 double floxed mice using Cre recombinase and PKD3 siRNA. We observed a similar localization of various organelles, a similar time course in the transport of VSV-G and a GPI-anchored protein, and a similar distribution of F-actin in the PKD-null MEFs. Collectively, our results demonstrate that the complete deletion of PKDs does not affect the transport of VSV-G or a GPI-anchored protein, and the distribution of F-actin. However, simultaneous deletion of PKD1 and PKD2 affect embryonic development, demonstrating their functional redundancy during development.


Assuntos
Actinas/metabolismo , Polaridade Celular , Organelas/metabolismo , Proteína Quinase C/metabolismo , Fatores de Despolimerização de Actina/metabolismo , Sequência de Aminoácidos , Animais , Feminino , Fibroblastos/citologia , Técnicas de Inativação de Genes , Isoenzimas/química , Isoenzimas/deficiência , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Camundongos , Dados de Sequência Molecular , Fosforilação , Proteína Quinase C/química , Proteína Quinase C/deficiência , Proteína Quinase C/genética , Transporte Proteico , RNA Interferente Pequeno/genética
9.
Bioorg Med Chem ; 21(24): 7853-7, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24184214

RESUMO

Aromatic and aliphatic nitrosamines are known to transfer a nitrosonium ion to another amine. The transnitrosation of alicyclic N-nitroso compounds generates S-nitrosothiols, which are potential nitric oxide donors in vivo. In this study, certain alicyclic N-nitroso compounds based on non-mutagenic N-nitrosoproline or N-nitrosothioproline were synthesised, and the formation of S-nitrosoglutathione (GSNO) was quantified under acidic conditions. We then investigated the effect of a sulfur atom as the substituent and as a ring component on the GSNO formation. In the presence of thiourea under acidic conditions, GSNO was formed from N-nitrosoproline and glutathione, and an N-nitroso compound containing a sulfur atom and glutathione produced GSNO without thiourea. The quantity of GSNO derived from the reaction of the N-nitrosamines containing a sulfur atom and glutathione was higher than that from the N-nitrosoproline and glutathione plus thiourea. Among the analogues that contained a sulfur atom either in the ring or as a substituent, the thiazolidines produced a slightly higher quantity of GSNO than the analogue with a thioamide group. A compound containing sulfur atoms both in the ring and as a substituent exhibited the highest activity for GSNO formation among the alicyclic N-nitrosamines tested. The results indicate that the intramolecular sulfur atom plays an important role in the transnitrosation via alicyclic N-nitroso compounds to form GSNO.


Assuntos
Nitrosaminas/química , Enxofre/química , Estrutura Molecular , S-Nitrosoglutationa/síntese química , S-Nitrosoglutationa/química
10.
Bioorg Med Chem ; 20(13): 4049-55, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22658540

RESUMO

Synthetic 6-chromanol derivatives were prepared with several chlorine substitutions, which conferred both electron-withdrawing inductive effects and electron-donating resonance effects. A trichlorinated compound (2), a dichlorinated compound (3), and three monochlorinated compounds (4, 5, and 6) were synthesized; compounds 2, 3, and 6 were novel. The antioxidant activities of the compounds, evaluated in terms of their capacities to scavenge galvinoxyl radical, were associated with the number and positioning of chlorine atoms in the aromatic ring of 6-chromanol. The activity of compound 1 (2,2-dimethyl-6-chromanol) was slightly higher than the activities of compounds 2 (2,2-dimethyl-5,7-dichloro-6-chromanol) or 3 (2,2-dimethyl-5,7,8-trichloro-6-chromanol), in which the chlorine atoms were ortho to the phenolic hydroxyl group of 6-chromanol. The scavenging activity of compound 3 was slightly higher than that of 2, which contained an additional chlorine substituted in the 8 position. The activities of polychlorinated compounds 2 and 3 were higher than the activities of any of the monochlorinated compounds (4-6). Compound 6, in which a chlorine was substituted in the 8 position, exhibited the lowest activity. Substitution of a chlorine atom meta to the hydroxyl group of 6-chromanol (compounds 2 and 6) decreased galvinoxyl radical scavenging activity, owing to the electron-withdrawing inductive effect of chlorine. Positioning the chloro group ortho to the hydroxyl group (compounds 4 and 5) retained antioxidant activity because the intermediate radical was stabilized by the electron-donating resonance effect of chlorine in spite of the electron-withdrawing inductive effect of chlorine. Antioxidant activities of the synthesized compounds were evaluated for correlations with the O-H bond dissociation energies (BDEs) and the ionization potentials. The BDEs correlated with the second-order rate constants (k) in the reaction between galvinoxyl radical and the chlorinated 6-chromanol derivatives in acetonitrile. This indicated that the antioxidant mechanism of the synthesized compounds consisted of a one-step hydrogen atom transfer from the phenolic OH group rather than an electron transfer followed by a proton transfer. The synthesized compounds also exhibited hydroxyl radical scavenging capacities in aqueous solution.


Assuntos
Cloro/química , Cromanos/química , Sequestradores de Radicais Livres/química , Compostos Benzidrílicos/química , Cromanos/síntese química , Sequestradores de Radicais Livres/síntese química , Radical Hidroxila/química , Cinética , Água/química
11.
Bioorg Med Chem ; 19(18): 5693-7, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21873073

RESUMO

N-Nitrosodialkylamines show their mutagenicity by forming α-hydroxynitrosamines in the presence of rat S9 mix in the Ames assay. The hydroxyl radical derived from Fe(2+)-H(2)O(2) (Fenton's reagent) with Cu(2+) activates N-nitrosamines, with an alkyl chain longer than a propyl constituent, to a direct-acting mutagen. The reactivity of Fe(2+)-Cu(2+)-H(2)O(2) on nitrosamines in relation to their metabolic activation is not fully characterized. Here, we report the identification of the direct-acting mutagen derived from N-nitroso-N-methylpentylamine (NMPe) in the presence of Fe(2+), Cu(2+), H(2)O(2) and nitric oxide (NO), which is a product of nitrosamine metabolism. A dichloromethane extract of the NMPe reaction mixtures was fractionated by silica gel column chromatography several times and by a preparative high performance liquid chromatography (HPLC); we obtained white crystals as a product. The direct-acting mutagen that was isolated was provisionally identified as 5-ethyl-5-nitro-1-pyrazoline 1-oxide by (1)H and (13)C nuclear magnetic resonance (NMR) spectroscopy, infrared (IR) spectroscopy and X-ray crystallography. To confirm the structure of the mutagen, the authentic compound was synthesized from 2-nitrobutene and diazomethane, followed by N-oxidation with m-chloroperoxybenzoic acid. The (1)H NMR spectral data from the direct-acting mutagen that was synthesized was identical to the data from the isolated mutagen. Furthermore, the authentic 5-ethyl-5-nitro-1-pyrazoline 1-oxide was mutagenic in Salmonella typhimurium TA1535. The results showed that 5-ethyl-5-nitro-1-pyrazoline 1-oxide was a direct-acting mutagen derived from the reaction of NMPe and Fe(2+)-Cu(2+)-H(2)O(2)-NO.


Assuntos
Cobre/química , Compostos Ferrosos/química , Peróxido de Hidrogênio/química , Mutagênicos/química , Nitrosaminas/química , Salmonella typhimurium/genética , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Íons/química , Modelos Moleculares , Estrutura Molecular , Mutagênicos/isolamento & purificação , Mutação , Óxido Nítrico/química , Nitrosaminas/isolamento & purificação , Estereoisomerismo , Relação Estrutura-Atividade
12.
Bioorg Med Chem ; 19(8): 2726-41, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21435887

RESUMO

Nitrosamines are potent carcinogens and toxicants in the rat and potential genotoxins in humans. They are metabolically activated by hydroxylation at an α-carbon atom with respect to the nitrosoamino group, catalyzed by cytochrome P450. However, there has been little systematic investigation of the structure-mutagenic activity relationship of N-nitrosamines. Herein, we evaluated the mutagenicity of a series of 7-azabicyclo[2.2.1]heptane N-nitrosamines and related monocyclic nitrosamines by using the Ames assay. Our results show that the N-nitrosamine functionality embedded in the bicyclic 7-azabicylo[2.2.1]heptane structure lacks mutagenicity, that is, it is inert to α-hydroxylation, which is the trigger of mutagenic events. Further, the calculated α-C-H bond dissociation energies of the bicyclic nitrosamines are larger in magnitude than those of the corresponding monocyclic nitrosamines and N-nitrosodimethylamine by as much as 20-30 kcal/mol. These results are consistent with lower α-C-H bond reactivity of the bicyclic nitrosamines. Thus, the 7-azabicyclo[2.2.1]heptane structural motif may be useful for the design of nongenotoxic nitrosamine compounds with potential biological/medicinal applications.


Assuntos
Compostos Bicíclicos com Pontes/farmacologia , Heptanos/farmacologia , Mutagênicos , Nitrosaminas/antagonistas & inibidores , Animais , Humanos , Hidroxilação , Testes de Mutagenicidade , Nitrosaminas/toxicidade , Ratos , Relação Estrutura-Atividade
13.
Bioorg Med Chem ; 18(23): 8284-8, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21030262

RESUMO

N-Nitrosodialkylamines are known to be potent indirect-acting mutagens/carcinogens, which are activated by cytochrome P450. The reaction product of N-nitroso-N-methylbutylamine (NMB) with modified Fenton's reagent supplemented with copper salt (Fe²(+)-Cu²(+)-H2O2) was reported to be mutagenic in Salmonella typhimurium TA1535 without S9 mix. In this study, the NMB activation mechanism was investigated by ESR spectroscopy with radical trapping agents to detect radical species and also by observing changes in mutagenic potency with a Salmonella strain in the Ames assay in the presence of radical trapping agents. In ESR spectroscopy experiments, the hydroxyl radical generated from the modified Fenton's reagent was detected using the hydroxyl radical trapping agent 5,5-dimethyl-1-pyrroline N-oxide (DMPO). Since the amount of the DMPO-OH adduct decreased with the addition of NMB, hydroxyl radical was presumed to react with NMB followed by the generation of nitric oxide (NO), which was detected as CarboxyPTI through reaction with 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (CarboxyPTIO). The mutagenicity of the reaction extract decreased following the addition of DMPO or CarboxyPTIO. Furthermore, the mutagenicity of the reaction product in the presence of DMPO was enhanced by the addition of NO. The reaction product from NMB with Fe²(+)-Cu²(+)-NO in the absence of H2O2 was mutagenic, and this activity increased with the introduction of additional NO. These findings suggest that hydroxyl radical takes part in the generation of NO from NMB and that NO plays an important role in NMB activation in the presence of Fe²(+) and Cu²(+).


Assuntos
Radical Hidroxila/química , Mutagênicos/química , Óxido Nítrico/química , Nitrosaminas/química , Cobre/química , Espectroscopia de Ressonância de Spin Eletrônica , Peróxido de Hidrogênio/química , Radical Hidroxila/metabolismo , Ferro/química , Testes de Mutagenicidade , Mutagênicos/metabolismo , Óxido Nítrico/metabolismo , Nitrosaminas/metabolismo , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética
14.
Toxicol In Vitro ; 23(6): 986-91, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19563884

RESUMO

Chemical models for cytochrome P450, consisting of water-insoluble or water-soluble iron porphyrin plus an oxidant, have been used to detect the mutagenicity of promutagens in genotoxicity assays. The procedure for using chemical models for cytochrome P450 as substitutes for the S9 mix in the Ames assay have been already established. Aromatic amines and amides require metabolic activation by cytochrome P450 when they exert their mutagenicity in Salmonella typhimurium strains. In this study, we optimized the conditions of the assay using a water-soluble chemical model, 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrinatoiron(III) pentachloride (4-MPy), plus tert-butyl hydroperoxide (t-BuOOH), magnesium monoperoxyphthalate, or iodosylbenzene, by comparing the mutagenicity of 2-aminofluorene (AF) in the Ames test. The model with 4-MPy/t-BuOOH showed the highest AF mutagenic potency. The chemical model activated 2-naphthylamine, 4-aminobiphenyl, and benzidine in S.typhimurium TA98. In aromatic amides, the model with 4-MPy/t-BuOOH weakly activated 2-acetylaminofluorene (AAF). To detect higher mutagenicity of aromatic amides, we used a higher concentration of 4-MPy/t-BuOOH by a factor of 5 over that used for aromatic amines, and then detected the mutagenicity of AAF, 2-acetylaminoanthracene, and 2-acetylamino-9-fluorenone. Furthermore, we concluded that the AAF mutagenicity in the presence of 4-MPy/t-BuOOH is derived from N-hydroxylacetylamino compounds.


Assuntos
Amidas/toxicidade , Aminas/toxicidade , Sistema Enzimático do Citocromo P-450/metabolismo , Mutagênicos/toxicidade , 2-Acetilaminofluoreno/toxicidade , Amidas/química , Amidas/metabolismo , Aminas/química , Aminas/metabolismo , Fluorenos/toxicidade , Modelos Químicos , Testes de Mutagenicidade , Mutagênicos/química , Mutagênicos/metabolismo , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética
15.
Bioorg Med Chem ; 17(10): 3568-71, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19394834

RESUMO

Among 14 bis-halomethylated naphthalenes and quinolines, 2,6-bis(bromomethyl)naphthalene was found to have highly active crosslinking activity on DNA. The unique behavior of high microbial mutagenicity, even though it had a low propensity to form double-strands in linearized plasmid DNA, suggested that it would offer a new seed, capable of forming intrastrand crosslinks similar to cisplatin. The electron withdrawal extent of the halogen atoms, the substitution patterns of two halomethyl groups, and the introduction of a nitrogen atom into the aromatic nucleus had remarkable effects on the activity of the molecule.


Assuntos
Reagentes de Ligações Cruzadas/química , DNA/análise , Naftalenos/química , Reagentes de Ligações Cruzadas/metabolismo , Naftalenos/metabolismo
16.
Bioorg Med Chem ; 16(14): 7070-7, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18586499

RESUMO

Oxidation of 2-acetylaminofluorene (AAF), a carcinogen, by a chemical model for cytochrome P450 was investigated to identify an active mutagen and elucidate the oxidation pathway. The oxidation system consisted of a water-insoluble tetrakis(pentafluorophenyl)porphyrinatoiron(III) chloride and tert-butyl hydroperoxide. The mutagen derived from AAF by the chemical model was 2-nitro-9-fluorenone (NO(2)=FO), which was mutagenic in Salmonella typhimurium TA1538. AAF was oxidized initially at position 9 of the fluorene carbon by the chemical model forming 2-acetylamino-9-fluorenol (AAF-OH), and then oxidized further to 2-acetylamino-9-fluorenone (AAF=O) as a major product. Initial oxidation of the nitrogen formed 2-nitrofluorene (NO(2)F), and further oxidation yielded 2-nitro-9-fluorenol (NO(2)F-OH) as a minor product. These products, AAF-OH, AAF=O, NO(2)F, and NO(2)F-OH, and their presumable common intermediate, N-hydroxy-2-acetylaminofluorene, were oxidized by the chemical model, and the formation of NO(2)F=O was determined. These results showed that NO(2)F=O was the mutagen derived from AAF in the presence of the chemical model and was formed via oxidation of N-OH-AAF, NO(2)F, and NO(2)F-OH. These results may lead to a new metabolic pathway of AAF.


Assuntos
2-Acetilaminofluoreno/química , Carcinógenos/química , Sistema Enzimático do Citocromo P-450 , Modelos Químicos , Porfirinas/química , terc-Butil Hidroperóxido/química , Testes de Mutagenicidade , Oxirredução , Salmonella typhimurium/efeitos dos fármacos , Água
17.
Nitric Oxide ; 14(4): 309-15, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16545970

RESUMO

Endogenously generated nitric oxide (NO) mediates a host of important physiological functions, playing roles in the vascular, immunological, and neurological systems. As a result, exogenous agents that release NO have become important therapeutic interventions and research tools. O(2)-Vinyl 1-(pyrrolidin-1-yl)diazen-1-ium-1,2-diolate (V-PYRRO/NO) is a prodrug designed with the hypothesis that it might release nitric oxide via epoxidation of the vinyl group by cytochrome P450, followed by enzymatic and/or spontaneous epoxide hydration to release the ultimate NO-donating moiety, 1-(pyrrolidin-1-yl)diazen-1-ium-1,2-diolate (PYRRO/NO) ion. In this study, we investigated this hypothetical activation mechanism quantitatively for V-PYRRO/NO using cDNA-expressed human cytochrome P450 (CYP)2E1. Incubation with CYP2E1 and an NADPH-regenerating system resulted in a time-dependent decomposition of V-PYRRO/NO, with a turnover rate of 2.0 nmol/min/pmol CYP2E1. Nitrate and nitrite were detected in high yield as metabolites of NO. The predicted organic metabolites pyrrolidine and glycolaldehyde were also detected in near-quantitative yields. The enzymatic decomposition of V-PYRRO/NO was also catalyzed, albeit at lower rates, by CYP2A6 and CYP2B6. We conclude that the initial step in the metabolism of V-PYRRO/NO to NO in the liver is catalyzed efficiently but not exclusively by the alcohol-inducible form of cytochrome P450 (CYP2E1). The results confirm the proposed activation mechanism involving enzymatic oxidation of the vinyl group in V-PYRRO/NO followed by epoxide hydration and hydrolytic decomposition of the resulting PYRRO/NO ion to generate nitric oxide.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Fígado/metabolismo , Óxido Nítrico/metabolismo , Pirrolidinas/metabolismo , Acetaldeído/análogos & derivados , Acetaldeído/metabolismo , Hidrocarboneto de Aril Hidroxilases/metabolismo , Catálise , Citocromo P-450 CYP2A6 , Citocromo P-450 CYP2B6 , Citocromo P-450 CYP2E1/metabolismo , DNA Complementar/metabolismo , Humanos , Cinética , Fígado/efeitos dos fármacos , Fígado/enzimologia , Oxigenases de Função Mista/metabolismo , NADP/metabolismo , Nitratos/metabolismo , Nitritos/metabolismo , Oxirredutases N-Desmetilantes/metabolismo , Pirrolidinas/farmacologia
18.
J Med Chem ; 49(3): 1157-64, 2006 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-16451080

RESUMO

PABA/NO is a diazeniumdiolate of structure Me(2)NN(O)=NOAr (where Ar is a 5-substituted-2,4-dinitrophenyl ring whose 5-substituent is N-methyl-p-aminobenzoic acid). It has shown activity against human ovarian cancer xenografts in mice rivaling that of cisplatin, but it is poorly soluble and relatively unstable in water. Here we report structure-based optimization efforts resulting in three analogues with improved solubility and stability in aqueous solution. We sought to explain PABA/NO's physicochemical uniqueness among these four compounds, whose aminobenzoic acid precursors differ structurally only in the presence or absence of the N-methyl group and/or the position of the carboxyl moiety (meta or para). Studies revealed that PABA/NO's N-methyl-p-aminobenzoic acid substituent is bound to the dinitrobenzene ring via its carboxyl oxygen while the other three are linked through the aniline nitrogen. This constitutes a revision of the previously published PABA/NO structure. All four analogues reacted with GSH to produce bioactive nitric oxide (NO), but PABA/NO was the most reactive. Consistent with PABA/NO's potent suppression of A2780 human ovarian cancer xenograft growth in mice, it was the most potent of the four in the OVCAR-3 cell line.


Assuntos
Antineoplásicos/síntese química , Compostos Azo/síntese química , para-Aminobenzoatos , Ácido 4-Aminobenzoico/síntese química , Ácido 4-Aminobenzoico/química , Ácido 4-Aminobenzoico/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Compostos Azo/química , Compostos Azo/farmacologia , Linhagem Celular Tumoral , Cristalografia por Raios X , Ensaios de Seleção de Medicamentos Antitumorais , Estabilidade de Medicamentos , Glutationa/química , Humanos , Hidrólise , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Óxido Nítrico/síntese química , Solubilidade , Relação Estrutura-Atividade , Transplante Heterólogo
19.
Org Biomol Chem ; 3(4): 626-9, 2005 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-15703798

RESUMO

The scavenging reaction of 2,2-diphenyl-1-picrylhydrazyl radical (DPPH.) or galvinoxyl radical (GO.) by a vitamin E model, 2,2,5,7,8-pentamethylchroman-6-ol (1H), was significantly accelerated by the presence of Mg(ClO4)2 in de-aerated methanol (MeOH). Such an acceleration indicates that the radical-scavenging reaction of 1H in MeOH proceeds via an electron transfer from 1H to the radical, followed by a proton transfer, rather than the one-step hydrogen atom transfer which has been observed in acetonitrile (MeCN). A significant negative shift of the one-electron oxidation potential of 1H in MeOH (0.63 V vs. SCE), due to strong solvation as compared to that in MeCN (0.97 V vs. SCE), may result in change of the radical-scavenging mechanisms between protic and aprotic media.


Assuntos
Sequestradores de Radicais Livres/química , Radicais Livres/química , Vitamina E/química , Compostos Benzidrílicos/química , Compostos de Bifenilo/química , Cloratos/química , Cromanos/química , Eletroquímica , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons , Hidrazinas/química , Cinética , Magnésio/química , Compostos de Magnésio/química , Metanol/química , Estrutura Molecular , Oxirredução , Picratos , Piridinas/química , Solventes/química
20.
Org Biomol Chem ; 1(22): 4085-8, 2003 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-14664398

RESUMO

Electron-transfer reduction of molecular oxygen (O2) by the phenolate anion (1-) of a vitamin E model, 2,2,5,7,8-pentamethylchroman-6-ol (1H), occurred to produce superoxide anion, which could be directly detected by a low-temperature EPR measurement. The rate of electron transfer from 1- to O2 was relatively slow, since this process is energetically unfavourable. The one-electron oxidation potential of 1- determined by cyclic voltammetric measurements is sufficiently negative to reduce 2,2-bis(4-tert-octylphenyl)-1-picrylhydrazyl radical (DOPPH*) to the corresponding one-electron reduced anion, DOPPH-, suggesting that 1- can also act as an efficient radical scavenger.


Assuntos
Oxigênio/química , Fenol/química , Vitamina E/química , Ânions , Cromanos/química , Espectroscopia de Ressonância de Spin Eletrônica , Elétrons , Radicais Livres , Cinética , Modelos Químicos , Espectrofotometria , Superóxidos/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...