Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Regen Ther ; 11: 34-40, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31193157

RESUMO

INTRODUCTION: Stem cell therapy with mesenchymal stem cells (MSCs) has been widely used in many clinical trials, and therapy with MSC sheets shows promise for patients. However, there are few reports characterizing MSC sheets. In the present study, the properties of MSC sheets derived from bone marrow, adipose tissue, and umbilical cord were evaluated. METHODS: Cell sheets were fabricated with MSCs from different tissue origins in temperature-responsive cell culture dishes with and without pre-coating of fetal bovine serum (FBS). MSC adhesion behavior in the culture dish was observed. Secretion of cytokines related to cell proliferation and immune regulation from MSC sheets was investigated by ELISA. The adhesion properties of the MSC sheets were investigated by time-lapse microscopy. RESULTS: Different cell adhesion and proliferation rates in temperature-responsive cell culture dishes were observed among the three types of MSCs. FBS pre-coating of the dishes enhanced cell attachment and proliferation in all cell types. Harvested cell sheets showed high attachment capacity to tissue culture polystyrene dish surfaces. CONCLUSIONS: MSC sheets can be fabricated from MSCs from different tissue origins using temperature-responsive cell culture dishes. The fabricated MSC sheets could be useful in cell transplantation therapies by choosing appropriate types of MSCs that secrete therapeutic cytokines for the targeted diseases.

2.
Colloids Surf B Biointerfaces ; 178: 253-262, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30875584

RESUMO

There is strong demand for cell separation methods that do not decrease cell activity or modify cell surfaces. Here, new temperature-modulated cell-separation columns not requiring cell-surface premodification are described. The columns were packed with temperature-responsive cationic polymer hydrogel-modified silica beads. Poly(N-isopropylacrylamide-co-n-butyl methacrylate-co-N,N-dimethylaminopropyl acrylamide) hydrogels with various cationic moieties were attached to silica-bead surfaces by radical polymerization using N,N'-methylenebisacrylamide as a crosslinking agent. The beads were packed into solid-phase extraction columns, and temperature-dependent cell elution from the columns was found using HL-60 and Jurkat cells. The retention HL-60 and Jurkat cells in columns containing cationic beads at 37 °C was 95.3% to 99.6% and 95.0% to 98.8%, respectively. By contrast, beads without cationic properties exhibited low cell retention (20.6% for HL-60 and 32.5% for Jurkat cells). The cells were mainly retained through both electrostatic and hydrophobic interactions. The retained HL-60 (4.9%) and Jurkat cells (40%) were eluted at 4 °C from the column with a low composition of cationic monomer (DMAPAAm, 1 mol% in copolymer), because the temperature-responsive hydrogels on the beads became hydrophilic, decreasing the hydrophobic interactions between the cells and the beads. A higher number of Jurkat cells than HL-60 cells were eluted because of differences in their electrostatic properties (Jurkat cells: -2.53 mV; HL-60 cells: -20.7 mV). The results indicated that cell retention by the hydrogel-coated beads packed in a solid phase extraction column could be modulated simply by changing the temperature.


Assuntos
Hidrogéis/química , Polímeros/química , Dióxido de Silício/química , Células HL-60 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Células Jurkat/metabolismo , Medicina Regenerativa , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA