Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 13(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38672954

RESUMO

γ-aminobutyric acid (GABA), recognized as a primary inhibitory neurotransmitter within the brain, serves a crucial role in the aging process and in neurodegenerative conditions such as Alzheimer's disease. Research has demonstrated the beneficial effects of GABA, particularly for elderly individuals. Given that elderly individuals often encounter challenges with swallowing food, beverages designed to address dysphagia represent a preferable option for this demographic. Among the different processing techniques, the germination process triggers biochemical changes, leading to an increase in certain nutrients and bioactive compounds (e.g., GABA). Therefore, we attempted to develop a novel functional beverage utilizing germinated brown rice enriched with GABA and studied its nutritional and bio-functional characterization. The optimal conditions (X1, X2, X3 and X4.) were determined: powdered sugar (40 g), chocolate powder (20 g), sodium carboxymethyl cellulose (0.5 g), GBR (220 g), and water (440 mL). The results of storage studies indicated that the germinated-brown-rice-based beverage exhibited favorable nutritional attributes, including increased γ-oryzanol (52.73 ± 1.56%), total phenolic content (26.68 ± 1.56 mg GAE/100 g), niacin (5.17 ± 0.14%), and GABA (42.12 ± 0.63 mg/100 g) levels. Additionally, the beverage demonstrated notable antioxidant activity (74.23 ± 2.37 µmol TE/100 g), suggesting potential health-promoting effects. Sensory evaluation revealed satisfactory acceptability among consumers, highlighting its palatability. Overall, this study elucidates the development of a novel functional beverage utilizing germinated brown rice enriched with GABA, offering promising nutritional and bio-functional characteristics for health-conscious consumers.

2.
Foods ; 13(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38540838

RESUMO

Elephant apple, a fruit with numerous bioactive compounds, is rich in therapeutic qualities. However, its use in processed products is limited due to insufficient postharvest processing methods. To address this issue, an automatic core cutter (ACC) was developed to handle the hard nature of the fruit while cutting. The physical characteristics of the elephant apple were considered for designing and development of the cutter. The cutter is divided into four main sections, including a frame, collecting tray, movable coring unit, and cutting base with five fruit holders. The parts that directly contact the fruit are made of food-grade stainless steel. The efficiency of the cutter was analyzed based on cutting/coring capacity, machine efficiency, loss percentage, and other factors, and was compared to traditional cutting methods (TCM) and a foot-operated core cutter (FOCC). The ACC had an average cutting/coring capacity of 270-300 kg/h, which was significantly higher than TCM's capacity of 12-15 kg/h and comparable to FOCC's capacity of 115-130 kg/h. The ACC offered a higher sepal yield of 85.68 ± 1.80% compared to TCM's yield of 65.76 ± 1.35%, which was equivalent to the yield obtained by FOCC. Therefore, the ACC outperforms TCM in terms of quality, quantity, and stress associated and is superior to FOCC in terms of higher efficiency of machine and labor.

3.
Gels ; 10(2)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38391425

RESUMO

Taro mucilage is a cost-effective, eco-friendly, and water-soluble edible viscous polysaccharide, which possesses diverse techno-functional properties including gelling and anti-microbial. Therefore, the objective of this study was to formulate and evaluate the efficacy of taro mucilage nanohydrogel for the shelf-life enhancement of fresh-cut apples. Taro mucilage was extracted using cold water extraction, and the yield of mucilage was found to be 2.95 ± 0.35% on a dry basis. Different concentrations of mucilage (1, 2, 3, 4, and 5%) were used to formulate the nanohydrogel. A smaller droplet size of 175.61 ± 0.92 nm was observed at 3% mucilage, with a zeta potential of -30.25 ± 0.94 mV. Moreover, FTIR data of nanohydrogel revealed the functional groups of various sugars, uronic acids, and proteins. Thermal analysis of nanohydrogel exhibited weight loss in three phases, and maximum weight loss occurred from 110.25 °C to 324.27 °C (65.16%). Nanohydrogel showed shear-thinning fluid or pseudo-plastic behavior. Coating treatment of nanohydrogel significantly reduced the weight loss of fresh-cut apples (8.72 ± 0.46%) as compared to the control sample (12.25 ± 0.78%) on the 10th day. In addition, minor changes were observed in the pH for both samples during the 10 days of storage. Titrable acidity of control fresh-cut apples measured 0.22 ± 0.05% on day 0, rising to 0.42 ± 0.03% on the 10th day, and for coated fresh-cut apples, it was observed to be 0.24 ± 0.07% on the 0th day and 0.36 ± 0.06% on 10th day, respectively. Furthermore, the total soluble solids (TSS) content of both control and coated fresh-cut apples measured on the 0th day was 11.85 ± 0.65% and 12.33 ± 0.92%, respectively. On the 10th day, these values were significantly increased (p < 0.05) to 16.38 ± 0.42% for the control and 14.26 ± 0.39% for the coated sliced apples, respectively. Nanohydrogel-coated fresh-cut apples retained antioxidant activity and vitamin C content as compared to the control sample. Taro mucilage nanohydrogel-based edible coating showed distinct anti-microbial activity against psychrotrophic, aerobic, and yeast molds. In summary, taro mucilage nanohydrogel can be used as a cost-effective natural coating material for the shelf-life enhancement or freshness maintenance of fresh-cut apples.

4.
Int J Biol Macromol ; 261(Pt 1): 129722, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38280696

RESUMO

Valorization of fish processing waste to obtain value-added products such as collagen and bioactive peptides is a vital strategy to increase the economic value, reduce disposal problems, and prevent harmful impacts on both environment and health. This study aims to isolate two collagen peptides from Taiwan Tilapia skin and prepare 12 nanopeptides including nanoemulsion (NE), nanoliposome (NL), and nanogold (NG) without and with folic acid/chitosan (FA/CH) or FA ligand conjugation for comparison of their inhibition efficiency towards lung cancer cells A549 and normal lung cells MRC5. Acid-soluble collagen (yield, 21.58 %) was extracted using 0.5 M acetic acid and hydrolyzed to obtain two tilapia skin collagen peptides TSCP1 (482 Da) and TSCP2 (172 Da) respectively using 2.5 % and 12.5 % alcalase, with sample-to-water ratio at 1:30 (w/v), pH 8, temperature 50 °C, and hydrolysis time 6 h. Characterization of collagen peptides revealed the presence of type 1 collagen with a high amount of amino acids including glycine (32.6-33.1 %), alanine (13.6-14.0 %), proline (10.0-10.5 %), and hydroxyproline (7.3-7.6 %). TSCP1, TSCP2, and 12 nanopeptides showed a higher cytotoxicity towards A549 cells than MRC5 cells, with TSCP2 and its 6 nanopeptides exhibiting a lower IC50 compared to TSCP1 and its 6 nanopeptides. The mean particle size was 15.7, 33.6, and 16.0 nm respectively for TSCP2-NE, TSCP2-NL, and TSCP2-NG, but changed to 14.4, 36.3, and 17.9 nm following ligand conjugation with a shift in zeta potential from negative to positive for TSCP2-NE-FA/CH and TSCP2-NL-FA/CH. All nanopeptides were more effective than peptides in inhibiting the growth of A549 cells, with the lowest IC50 value being shown for TSCP2-NL-FA/CH (5.32 µg/mL), followed by TSCP2-NE-FA/CH (8.3 µg/mL), TSCP2-NE (22.4 µg/mL), TSCP2-NL (82.7 µg/mL), TSCP2-NG-FA (159.8 µg/mL), TSCP2-NG (234.0 µg/mL) and TSCP2 (359.7 µg/mL). Cell proportions of sub-G1, S, and G2/M phases increased dose-dependently, with a possible cell cycle arrest at G2/M phase. The proportion of necrotic cells was the highest for TSCP2, TSCP2-NE, TSCP2-NE-FA/CH, and TSCP2-NL, while that of late apoptotic cells dominated for TSCP2-NL-FA/CH, TSCP2-NG, and TSCP2-NG-FA. Similarly, TSCP2 and its 6 nanopeptides showed a dose-dependent rise in caspase-3, caspase-8, and caspase-9 activities for execution of apoptosis, with the ligand-conjugated nanopeptides being the most efficient, followed by nanopeptides and peptides. The outcome of this study demonstrated an effective strategy for valorization of Taiwan tilapia skin to obtain collagen peptides and their nanopeptides possessing anticancer activity and form a basis for in vivo study in the future.


Assuntos
Neoplasias Pulmonares , Tilápia , Animais , Humanos , Ácido Fólico/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Ligantes , Taiwan , Colágeno/química , Peptídeos/química , Pulmão
5.
Foods ; 13(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38254486

RESUMO

This study aims to explore the effects of frying conditions on the formation of HAs and PAHs in crispy pork spareribs, a popular meat commodity sold on Taiwan's market. Raw pork spareribs were marinated, coated with sweet potato powder, and fried in soybean oil and palm oil at 190 °C/6 min or 150 °C/12 min, followed by an analysis of HAs and PAHs via QuEChERS coupled with UPLC-MS/MS and GC-MS/MS, respectively. Both HAs and PAHs in pork spareribs during frying followed a temperature- and time-dependent rise. A total of 7 HAs (20.34-25.97 µg/kg) and 12 PAHs (67.69-85.10 µg/kg) were detected in pork spareribs fried in soybean oil and palm oil at 150 °C/12 min or 190 °C/6 min, with palm oil producing a higher level of total HAs and a lower level of total PAHs than soybean oil. The content changes of amino acid, reducing sugar, and creatinine played a vital role in affecting HA formation, while the degree of oil unsaturation and the contents of precursors including benzaldehyde, 2-cyclohexene-1-one, and trans,trans-2,4-decadienal showed a crucial role in affecting PAH formation. The principal component analysis revealed that HAs and PAHs were formed by different mechanisms, with the latter being more liable to formation in pork spareribs during frying, while the two-factorial analysis indicated that the interaction between oil type and frying condition was insignificant for HAs and PAHs generated in crispy pork spareribs. Both CcdP (22.67-32.78 µg/kg) and Pyr (16.70-22.36 µg/kg) dominated in PAH formation, while Harman (14.46-17.91 µg/kg) and Norharman (3.41-4.55 µg/kg) dominated in HA formation in crispy pork spareribs during frying. The outcome of this study forms a basis for learning both the variety and content of HAs and PAHs generated during the frying of pork spareribs and the optimum frying condition to minimize their formation.

6.
Int J Biol Macromol ; 259(Pt 1): 129129, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38181913

RESUMO

Agro-food waste is a rich source of biopolymers such as cellulose, chitin, and starch, which have been shown to possess excellent biocompatibility, biodegradability, and low toxicity. These properties make biopolymers from agro-food waste for its application in tissue engineering and regenerative medicine. Thus, this review highlighted the properties, processing methods, and applications of biopolymers derived from various agro-food waste sources. We also highlight recent advances in the development of biopolymers from agro-food waste and their potential for future tissue engineering and regenerative medicine applications, including drug delivery, wound healing, tissue engineering, biodegradable packaging, excipients, dental applications, diagnostic tools, and medical implants. Additionally, it explores the challenges, prospects, and future directions in this rapidly evolving field. The review showed the evolution of production techniques for transforming agro-food waste into valuable biopolymers. However, these biopolymers serving as the cornerstone in scaffold development and drug delivery systems. With their role in wound dressings, cell encapsulation, and regenerative therapies, biopolymers promote efficient wound healing, cell transplantation, and diverse regenerative treatments. Biopolymers support various regenerative treatments, including cartilage and bone regeneration, nerve repair, and organ transplantation. Overall, this review concluded the potential of biopolymers from agro-food waste as a sustainable and cost-effective solution in tissue engineering and regenerative medicine, offering innovative solutions for medical treatments and promoting the advancement of these fields.


Assuntos
Eliminação de Resíduos , Engenharia Tecidual , Medicina Regenerativa/métodos , Perda e Desperdício de Alimentos , Alimentos , Polímeros , Biopolímeros
7.
Front Chem ; 11: 1260165, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37780989

RESUMO

Milletia pinnata oil and Nardostachys jatamansi are rich sources of bioactive compounds and have been utilized to formulate various herbal formulations, however, due to certain environmental conditions, pure extract form is prone to degradation. Therefore, in this, study, a green hydrodistillation technology was used to extract M. pinnata oil and N. jatamansi root for the further application in development of pectin crosslinked carboxymethyl cellulose/guar-gum nano hydrogel. Both oil and extract revealed the presence of spirojatamol and hexadecanoic acid methyl ester. Varied concentrations (w/w) of cross-linker and gelling agent were used to formulate oil emulsion extract gel (OEEG1, OEG1, OEEG2, OEG2, OEEG3, OEG3, OEEG4, OEG4, OEEG5, OEG5), in which OEEG2 and OEG2 were found to be stable. The hydrogel displayed an average droplet size of 186.7 nm and a zeta potential of -20.5 mV. Endo and exothermic peaks and the key functional groups including hydroxyl, amide II, and amide III groups confirmed thermal stability and molecular structure. The smooth surface confirmed structural uniformity. Bactericidal activity against both Gram-positive (25.41 ± 0.09 mm) and Gram-negative (27.25 ± 0.01 mm) bacteria and anti-inflammatory activity (49.25%-83.47%) makes nanohydrogel a potential option for treating various infections caused by pathogenic microorganisms. In conclusion, the use of green hydrodistillation technology can be used to extract the bioactive compounds that can be used in formulation of biocompatible and hydrophobic nanohydrogels. Their ability to absorb target-specific drugs makes them a potential option for treating various infections caused by pathogenic microorganisms.

8.
Int J Biol Macromol ; 253(Pt 8): 127524, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37865365

RESUMO

Artificial packaging materials, such as plastic, can cause significant environmental problems. Thus, the use of polysaccharide-based biodegradable polymers (cellulose, starch, and alginate) has the potential in the field of environmental sustainability, reprocessing, or protection of the environment. Morphological and structural alterations caused by material degradation have a substantial impact on polymer material characteristics. To avoid degradation during storage, it is critical to evaluate and comprehend the structure, characteristics, and behavior of modern bio-based materials for potential food packaging applications. Hence, this review focused on the various types of polysaccharide-based biodegradable polymers (cellulose, starch, and alginate), their properties, and their commercial potential for food packaging applications. In addition, we overviewed the recent development of polysaccharide-based biodegradable polymer (cellulose, starch, and alginate) packaging for food products. The review concluded that the membrane and chromatographics are widely used in production of cellulose, starch, and alginate-based biodegradable polymers. Also, nanotechnology-based food packaging is widely used to improve the properties of cellulose, starch, and alginate biodegradable polymers and the incorporation of active agents to enhance the shelf life of food products. Overall, the review highlighted the potential of cellulose, starch, and alginate biodegradable polymers in the food packaging industry and the need for potential research and development to improve their properties and commercial viability.


Assuntos
Embalagem de Alimentos , Polímeros , Polissacarídeos/química , Celulose/química , Amido/metabolismo , Alginatos
9.
Foods ; 12(19)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37835214

RESUMO

In the present study, ethanol extract obtained from the mycelial culture of Agrocybe aegerita was evaluated for its antioxidant activity as well for its potential to inhibit the virulence factor responsible for quorum-sensing activity and antibiofilm activity of pathogenic Pseudomonas aeruginosa PAO1 strain. The extract of mushroom at different concentrations showed percentage inhibition in a dose-dependent manner for DPPH and nitric oxide assays with the lowest as 38.56 ± 0.11% and 38.87 ± 0.04% at 50 µg/mL and the highest as 85.63 ± 0.12% and 82.34 ± 0.12% at 200 µg/mL. FTIR analysis confirmed the presence of functional group -OH, O-H bending bonds, C=C stretching, pyranose ring, and H-C-H stretch, confirming the presence of phenol, carotenoid, and ascorbic acid. HPLC analysis revealed that the concentration of gallic acid present in the extract is 27.94 mg/100 g which is significantly (p < 0.05) more than the concentration of rutin (i.e., 7.35 mg/100 g). GC-MS analysis revealed the presence of 5-methyl-1-heptanol, 2-heptadecenal, phthalic acid, butyl hept-4-yl ester, 2-dodecanol, benzoic acid, TMS derivative. The extract showed significantly (p < 0.05) more inhibition of pyocyanin (61.32%) and pyoverdine (54.02%). At higher concentrations of mushroom extract, there was a significant (p < 0.05) reduction (56.32%) in the swarming motility of the test organism. The extract showed 72.35% inhibition in biofilm formation. Therefore, it has been concluded from the present study that mushroom extract, which is rich in phenolic compounds interferes with the virulence factor responsible for quorum sensing, thereby inhibiting biofilm formation, and can be utilized as therapeutic agents against multi-drug resistant pathogenic microorganisms.

10.
Foods ; 12(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37048211

RESUMO

The aim of this study was to compare the refractance window drying method (RWD) with the hot air oven drying (HD), vacuum drying (VD), and freeze-drying (FD) methods in order to analyze the outcomes of the qualitative properties of dragon fruit slices and pulp. Moreover, the impact of temperature on the phenolic content, antioxidant activity, color, and texture of the dragon fruit slices and pulp were studied. The results showed that the RWD samples exhibited a high nutritional quality in contrast to the other drying methods. The RWD method had a short drying time of 960 min to reach the final moisture content of 6.50% (dry basis), while the FD, VD, and HD methods had significantly higher drying times of 1320, 1200, and 1080 min, respectively, to reach the final moisture content. Higher values of TPC (182 mg GAE/100 g) and crude fiber (0.98%) were obtained in the RWD dragon fruit samples, indicating the potential of RWD to preserve the quality of dried samples. In conclusion, this study revealed that RWD provides an appropriate drying temperature as an alternative to freeze-drying. RWD may improve dragon fruit drying, adding value to the food industry.

11.
Animals (Basel) ; 13(8)2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37106930

RESUMO

The growing population and healthy food demands have led to a rise in food waste generation, causing severe environmental and economic impacts. However, food waste (FW) can be converted into sustainable animal feed, reducing waste disposal and providing an alternative protein source for animals. The utilization of FW as animal feed presents a solution that not only tackles challenges pertaining to FW management and food security but also lessens the demand for the development of traditional feed, which is an endeavour that is both resource and environmentally intensive in nature. Moreover, this approach can also contribute to the circular economy by creating a closed-loop system that reduces the use of natural resources and minimizes environmental pollution. Therefore, this review discusses the characteristics and types of FW, as well as advanced treatment methods that can be used to recycle FW into high-quality animal feed and its limitations, as well as the benefits and drawbacks of using FW as animal feed. Finally, the review concludes that utilization of FW as animal feed can provide a sustainable solution for FW management, food security, preserving resources, reducing environmental impacts, and contributing to the circular bioeconomy.

12.
Foods ; 12(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36832894

RESUMO

Noodles are a popular snack mainly produced from wheat flour; however, the low contents of protein, minerals, and lysine are a concern. Therefore, this research developed nutri-rich instant noodles by using foxtail millet (FTM) (Setaria italic) flour to improve the contents of protein and nutrients and increase its commercial importance. FTM flour was mixed with wheat flour (Triticum aestivum) at a ratio of 0:100, 30:60, 40:50, and 50:40, and the samples were named as control, FTM30, FTM40, and FTM50 noodles, respectively. Mushroom (Pleurotus ostreatus) and rice bran (Oryza sativa L.) flour were added at a percentage of 5% to all the composite noodles (FTM30, FTM40, and FTM50 noodles). The contents of biochemicals, minerals, and amino acids, as well as the organoleptic properties of the noodles, were examined and compared with wheat flour as a control. The results revealed that the carbohydrate (CHO) content of FTM50 noodles was significantly lower (p < 0.05) than all the developed and five commercial noodles named A-1, A-2, A-3, A-4, and A-5. Moreover, the FTM noodles had significantly higher levels of protein, fiber, ash, calcium, and phosphorous than the control and commercial noodles. The percentage of lysine calculated protein efficiency ratio (PER), essential amino acid index (EAAI), biological value (BV), and chemical score (CS) of FTM50 noodles were also higher than that of the commercial noodles. The total bacterial count was nil for the FTM50 noodles, and the organoleptic properties were consistent with those of acceptable standards. The results could encourage the application of FTM flours for the development of variety and value-added noodles with enhanced level of nutrients.

13.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36835343

RESUMO

Mangosteen peel, a waste produced during mangosteen processing, has been reported to be rich in xanthone and anthocyanin, both of which possess vital biological activities such as anti-cancer properties. The objectives of this study were to analyze various xanthones and anthocyanins in mangosteen peel by UPLC-MS/MS for the subsequent preparation of both xanthone and anthocyanin nanoemulsions to study their inhibition effects on liver cancer cells HepG2. Results showed that methanol was the optimal solvent for the extraction of xanthones and anthocyanins, with a total amount of 68,543.39 and 2909.57 µg/g, respectively. A total of seven xanthones, including garcinone C (513.06 µg/g), garcinone D (469.82 µg/g), γ-mangostin (11,100.72 µg/g), 8-desoxygartanin (1490.61 µg/g), gartanin (2398.96 µg/g), α-mangostin (51,062.21 µg/g) and ß-mangostin (1508.01 µg/g), as well as two anthocyanins including cyanidin-3-sophoroside (2889.95 µg/g) and cyanidin-3-glucoside (19.72 µg/g), were present in mangosteen peel. The xanthone nanoemulsion was prepared by mixing an appropriate portion of soybean oil, CITREM, Tween 80 and deionized water, while the anthocyanin nanoemulsion composed of soybean oil, ethanol, PEG400, lecithin, Tween 80, glycerol and deionized water was prepared as well. The mean particle size of the xanthone extract and nanoemulsion were, respectively, 22.1 and 14.0 nm as determined by DLS, while the zeta potential was -87.7 and -61.5 mV. Comparatively, xanthone nanoemulsion was more effective than xanthone extract in inhibiting the growth of HepG2 cells, with the IC50 being 5.78 µg/mL for the former and 6.23 µg/mL for the latter. However, the anthocyanin nanoemulsion failed to inhibit growth of HepG2 cells. Cell cycle analysis revealed that the proportion of the sub-G1 phase followed a dose-dependent increase, while that of the G0/G1 phase showed a dose-dependent decline for both xanthone extracts and nanoemulsions, with the cell cycle being possibly arrested at the S phase. The proportion of late apoptosis cells also followed a dose-dependent rise for both xanthone extracts and nanoemulsions, with the latter resulting in a much higher proportion at the same dose. Similarly, the activities of caspase-3, caspase-8 and caspase-9 followed a dose-dependent increase for both xanthone extracts and nanoemulsions, with the latter exhibiting a higher activity at the same dose. Collectively, xanthone nanoemulsion was more effective than xanthone extract in inhibiting the growth of HepG2 cells. Further research is needed to study the anti-tumor effect in vivo.


Assuntos
Garcinia mangostana , Neoplasias Hepáticas , Xantonas , Humanos , Antocianinas , Espectrometria de Massas em Tandem , Óleo de Soja , Cromatografia Líquida , Polissorbatos , Xantonas/farmacologia , Linhagem Celular Tumoral , Extratos Vegetais/farmacologia , Água
14.
Bioengineering (Basel) ; 10(2)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36829646

RESUMO

The agricultural sector generates a significant amount of waste, the majority of which is not productively used and is becoming a danger to both world health and the environment. Because of the promising relevance of agro-residues in the agri-food-pharma sectors, various bioproducts and novel biologically active molecules are produced through valorization techniques. Valorization of agro-wastes involves physical, chemical, and biological, including green, pretreatment methods. Bioactives and bioproducts development from agro-wastes has been widely researched in recent years. Nanocapsules are now used to increase the efficacy of bioactive molecules in food applications. This review addresses various agri-waste valorization methods, value-added bioproducts, the recovery of bioactive compounds, and their uses. Moreover, it also covers the present status of bioactive micro- and nanoencapsulation strategies and their applications.

15.
Bioengineering (Basel) ; 10(1)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36671636

RESUMO

The ayurvedic herb Emblica officinalis (E. officinalis) is a gift to mankind to acquire a healthy lifestyle. It has great therapeutic and nutritional importance. Emblica officinalis, also known as Indian gooseberry or Amla, is a member of the Euphorbiaceae family. Amla is beneficial for treating illnesses in all its forms. The most crucial component is a fruit, which is also the most common. It is used frequently in Indian medicine as a restorative, diuretic, liver tonic, refrigerant, stomachic, laxative, antipyretic, hair tonic, ulcer preventive, and for the common cold and fever. Hyperlipidemia is also known as high cholesterol or an increase in one or more lipid-containing blood proteins. Various phytocompounds, including polyphenols, vitamins, amino acids, fixed oils, and flavonoids, are present in the various parts of E. officinalis. E. officinalis has been linked to a variety of pharmacological effects in earlier studies, including hepatoprotective, immunomodulatory, antimicrobial, radioprotective, and hyperlipidemic effects. The amla-derived active ingredients and food products nevertheless encounter challenges such as instability and interactions with other food matrices. Considering the issue from this perspective, food component nanoencapsulation is a young and cutting-edge field for controlled and targeted delivery with a range of preventative activities. The nanoformulation of E. officinalis facilitates the release of active components or food ingredients, increased bioaccessibility, enhanced therapeutic activities, and digestion in the human body. Accordingly, the current review provides a summary of the phytoconstituents of E. officinalis, pharmacological actions detailing the plant E. officinalis's traditional uses, and especially hyperlipidemic activity. Correspondingly, the article describes the uses of nanotechnology in amla therapeutics and functional ingredients.

16.
Foods ; 12(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36673328

RESUMO

The present study was aimed at developing whey-mango-based mixed beverages and characterizing their physicochemical properties. Three different formulations were prepared by varying proportions of whey and mango (sample-1 = 60:20 mL, sample-2 = 65:15 mL, and sample-3 = 70:10 mL). Prepared beverage samples during 25 days of storage revealed a significant increase in acidity (0.27 ± 0.02−0.64 ± 0.03%), TSS (17.15 ± 0.01−18.20 ± 0.01 °Brix); reducing sugars (3.01 ± 0.01−3.67 ± 0.01%); moisture (74.50 ± 0.02−87.02 ± 0.03%); protein (5.67 ± 0.02−7.58 ± 0.01%); fat (0.97 ± 0.01−1.39 ± 0.04%); and carbohydrate (18.01 ± 0.02−3.45 ± 0.02%). The sedimentation rate was only 1%. The total plate count for the prepared samples ranged from 3.32 ± 0.08 to 3.49 ± 0.15 log CFU/mL while yeast and mold counts varied between 0.48 ± 0.01 to 1.85 ± 0.11 Log CFU/mL. The coliform count was below the detection limit (<1). The overall sensory score revealed that the whey beverage with more mango juice could attain acceptable quality upon processing. Based on the findings, it may be concluded that whey can be utilized with fruits and vegetables to develop whey-based beverages.

17.
Foods ; 12(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36673441

RESUMO

In the past couple of years, cellulose has attracted a significant amount of attention and research interest due to the fact that it is the most abundant and renewable source of hydrogels. With increasing environmental issues and an emerging demand, researchers around the world are focusing on naturally produced hydrogels in particular due to their biocompatibility, biodegradability, and abundance. Hydrogels are three-dimensional (3D) networks created by chemically or physically crosslinking linear (or branching) hydrophilic polymer molecules. Hydrogels have a high capacity to absorb water and biological fluids. Although hydrogels have been widely used in food applications, the majority of them are not biodegradable. Because of their functional characteristics, cellulose-based hydrogels (CBHs) are currently utilized as an important factor for different aspects in the food industry. Cellulose-based hydrogels have been extensively studied in the fields of food packaging, functional food, food safety, and drug delivery due to their structural interchangeability and stimuli-responsive properties. This article addresses the sources of CBHs, types of cellulose, and preparation methods of the hydrogel as well as the most recent developments and uses of cellulose-based hydrogels in the food processing sector. In addition, information regarding the improvement of edible and functional CBHs was discussed, along with potential research opportunities and possibilities. Finally, CBHs could be effectively used in the industry of food processing for the aforementioned reasons.

18.
Bioengineering (Basel) ; 9(12)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36551003

RESUMO

Cardiovascular diseases (CVD) are the leading cause of mortality, morbidity, and "sudden death" globally. Environmental and lifestyle factors play important roles in CVD susceptibility, but the link between environmental factors and genetics is not fully established. Epigenetic influence during CVDs is becoming more evident as its direct involvement has been reported. The discovery of epigenetic mechanisms, such as DNA methylation and histone modification, suggested that external factors could alter gene expression to modulate human health. These external factors also influence our gut microbiota (GM), which participates in multiple metabolic processes in our body. Evidence suggests a high association of GM with CVDs. Although the exact mechanism remains unclear, the influence of GM over the epigenetic mechanisms could be one potential pathway in CVD etiology. Both epigenetics and GM are dynamic processes and vary with age and environment. Changes in the composition of GM have been found to underlie the pathogenesis of metabolic diseases via modulating epigenetic changes in the form of DNA methylation, histone modifications, and regulation of non-coding RNAs. Several metabolites produced by the GM, including short-chain fatty acids, folates, biotin, and trimethylamine-N-oxide, have the potential to regulate epigenetics, apart from playing a vital role in normal physiological processes. The role of GM and epigenetics in CVDs are promising areas of research, and important insights in the field of early diagnosis and therapeutic approaches might appear soon.

19.
Foods ; 11(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36230156

RESUMO

This study aims to simultaneously extract heterocyclic amines (HAs) and polycyclic aromatic hydrocarbons (PAHs) from ground pork for respective analysis by UPLC-MS/MS and GC-MS/MS, and study the effects of different flavorings and marinating time length on their formation and inhibition. Results showed that both HA and PAH contents followed a time-dependent increase during marinating, with HAs being more susceptible to formation than PAHs. The total HA contents in unmarinated pork and juice was, respectively, 61.58 and 139.26 ng/g, and rose to 2986.46 and 1792.07 ng/g after 24-h marinating, which can be attributed to the elevation of reducing sugar and creatinine contents. The total PAH contents in unmarinated pork and juice were, respectively, 34.56 and 26.84 ng/g, and increased to 55.93 and 44.16 ng/g after 24-h marinating, which can be due to the increment of PAH precursors such as benzaldehyde, 2-cyclohexene-1-one and trans,trans-2,4-decadienal. Incorporation of 0.5% (w/v) cinnamon powder or 0.5% (w/v) green tea powder was effective in inhibiting HA formation with the former showing a more pronounced effect for marinated pork, while the latter was for marinated juice. However, their addition was only effective in inhibiting PAH formation in marinated pork. Principle component analysis revealed the relationship between HA and PAH formation in ground pork and juice during marinating.

20.
Molecules ; 27(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36234910

RESUMO

The recent coronavirus disease (COVID-19) outbreak in Wuhan, China, has led to millions of infections and the death of approximately one million people. No targeted therapeutics are currently available, and only a few efficient treatment options are accessible. Many researchers are investigating active compounds from natural plant sources that may inhibit COVID-19 proliferation. Flavonoids are generally present in our diet, as well as traditional medicines and are effective against various diseases. Thus, here, we reviewed the potential of flavonoids against crucial proteins involved in the coronavirus infectious cycle. The fundamentals of coronaviruses, the structures of SARS-CoV-2, and the mechanism of its entry into the host's body have also been discussed. In silico studies have been successfully employed to study the interaction of flavonoids against COVID-19 Mpro, spike protein PLpro, and other interactive sites for its possible inhibition. Recent studies showed that many flavonoids such as hesperidin, amentoflavone, rutin, diosmin, apiin, and many other flavonoids have a higher affinity with Mpro and lower binding energy than currently used drugs such as hydroxylchloroquine, nelfinavir, ritonavir, and lopinavir. Thus, these compounds can be developed as specific therapeutic agents against COVID-19, but need further in vitro and in vivo studies to validate these compounds and pave the way for drug discovery.


Assuntos
Tratamento Farmacológico da COVID-19 , Diosmina , Hesperidina , Antivirais/química , Flavonoides/química , Flavonoides/farmacologia , Humanos , Lopinavir/química , Simulação de Acoplamento Molecular , Nelfinavir , Ritonavir/química , Ritonavir/farmacologia , Rutina , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...