Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Zool B Mol Dev Evol ; 336(5): 404-416, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33988912

RESUMO

Non-iridescent, structural coloration in birds originates from the feather's internal nanostructure (the spongy matrix) but melanin pigments and the barb's cortex can affect the resulting color. Here, we explore how this nanostructure is combined with other elements in differently colored plumage patches within a bird. We investigated the association between light reflectance and the morphology of feathers from the back and belly plumage patches of male swallow tanagers (Tersina viridis), which look greenish-blue and white, respectively. Both plumage patches have a reflectance peak around 550 nm but the reflectance spectrum is much less saturated in the belly. The barbs of both types of feathers have similar spongy matrices at their tips, rendering their reflectance spectra alike. However, the color of the belly feather barbs changes from light green at their tips to white closer to the rachis. These barbs lack pigments and their morphology changes considerably throughout. Toward the rachis, the barb is almost hollow, with a reduced area occupied by spongy matrix, and has a flattened shape. By contrast, the blue back feathers' barbs have melanin underneath the spongy matrix resulting in a much more saturated coloration. The color of these barbs is also even along the barbs' length. Our results suggest that the color differences between the white and greenish-blue plumage are mostly due to the differential deposition of melanin and a reduction of the spongy matrix near the rachis of the belly feather barbs and not a result of changes in the characteristics of the spongy matrix.


Assuntos
Plumas/anatomia & histologia , Plumas/fisiologia , Passeriformes/anatomia & histologia , Passeriformes/fisiologia , Pigmentação/fisiologia , Animais , Masculino , Pigmentos Biológicos
2.
Appl Opt ; 59(13): 3901-3909, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32400659

RESUMO

In this paper, we investigate the unusual color effect exhibited by the plumage of the heads of Cyanerpes cyaneus males, whose color turns from green to turquoise as the angle between the illumination and observation directions is increased. This singular color effect is characteristic of species that have quasi-ordered nanostructures of short-range order within the feather barbs. However, among species of the same family and even within feather patches of the same individual, one can find barbs with different characteristics, both macroscopic (curvature, shape, cross-sectional area) and in their internal microstructure. We apply the Korringa-Kohn-Rostoker method with the averaging technique to model the reflectance spectra for different angles of incidence and explain the dependence of the observed color with the incidence-collection angle. To investigate the influence of the disorder in the optical response of the spongy matrix, we apply the integral method for a two-dimensional cylinder system that simulates the distribution of air cavities within the $ \beta $ß-keratin medium. The experimental reflectance was interpreted as the result of multiple reflections in the internal interfaces generated by large air voids present within the spongy matrix. The application of rigorous methods to the study of natural photonic structures is of fundamental relevance for the design of efficient bioinspired artificial materials.


Assuntos
Plumas/fisiologia , Pigmentação/fisiologia , Pigmentos Biológicos/metabolismo , Animais , Aves , Cor , Masculino , Modelos Biológicos , Nanoestruturas/química , Fenômenos Ópticos , Óptica e Fotônica , Espectrofotometria , beta-Queratinas/metabolismo
3.
Appl Opt ; 56(18): 5112-5120, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29047560

RESUMO

We explore the electromagnetic response of the pellicle of selected species of euglenoids. These microorganisms are bounded by a typical surface pellicle formed by S-shaped overlapping bands that resemble a corrugated film. We investigate the role played by this structure in the protection of the cell against UV radiation. By considering the pellicle as a periodically corrugated film of finite thickness, we applied the C-method to compute the reflectance spectra. The far-field results revealed reflectance peaks with a Q-factor larger than 103 in the UV region for all the illumination conditions investigated. The resonant behavior responsible for this enhancement has also been illustrated by near-field computations performed by a photonic simulation method. These results confirm that the corrugated pellicle of euglenoids shields the cell from harmful UV radiation and open up new possibilities for the design of highly UV-reflective surfaces.


Assuntos
Radiação Eletromagnética , Euglênidos/efeitos da radiação , Euglênidos/ultraestrutura , Euglena gracilis/efeitos da radiação , Euglena gracilis/ultraestrutura , Microscopia Eletrônica de Transmissão
4.
J Opt Soc Am A Opt Image Sci Vis ; 23(4): 949-55, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16604780

RESUMO

The geometric representation at a fixed frequency of the wave vector (or dispersion) surface omega(k) for lossless, homogeneous, dielectric-magnetic uniaxial materials is explored for the case when the elements of the relative permittivity and permeability tensors of the material can have any sign. Electromagnetic plane waves propagating inside the material can exhibit dispersion surfaces in the form of ellipsoids of revolution, hyperboloids of one sheet, or hyperboloids of two sheets. Furthermore, depending on the relative orientation of the optic axis, the intersections of these surfaces with fixed planes of propagation can be circles, ellipses, hyperbolas, or straight lines. The understanding obtained is used to study the reflection and refraction of electromagnetic plane waves due to a planar interface with an isotropic medium.

5.
Appl Opt ; 42(19): 3742-4, 2003 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-12868808

RESUMO

The differences in the curves of the zeroth-order cross-polarization reflection coeffients (p --> s and s --> p) versus angle of incidence have remarkable potential for application in scatterometry because, if the differences are larger than the measurement error, they could contribute to a reliable nondestructive technique for detecting asymmetries in grating profiles. The cross-polarization efficiencies of highly conducting metallic gratings with asymmetric trapezoidal profiles are investigated theoretically by means of a rigorous electromagnetic code. The results show that the differences between p --> s and s --> p conversion tend to be undetectable for highly conducting materials, a fact that limits, in principle, the application of this potential detection technique.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...