Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 28(14): 20205-20214, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32680085

RESUMO

Stable picosecond supercontinuum generated in long crystals is an excellent means of seeding broadband, high-energy CPA systems. The generated output energy and spectrum can be almost three times as stable as the pump for a wide range of input pulse parameters. In this work, we show this is an intrinsic property for crystals longer than the filament and for a range of input energy values. We present a description of the stability mechanism in both the visible and infrared regions together with experimental data that support the theoretical explanation.

2.
Opt Lett ; 42(4): 843-846, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28198879

RESUMO

We present a stable supercontinuum (SC) generated in a bulk YAG crystal, pumped by 3 ps chirped pulses at 1030 nm. The SC is generated in a loose focus geometry in a 13 cm long YAG crystal, allowing for stable and robust single-filament generation. The SC energy stability exceeds that of the pump laser by almost a factor of 3. Additionally, we show that the SC spectrum has long-term stability and that the SC is coherent and compressible by compressing the portions of SC spectra close to the corresponding Fourier limit. This makes the picosecond-pulse-driven SC a suitable stable seed for OPCPA amplifiers.

3.
Rev Sci Instrum ; 88(1): 013109, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28147631

RESUMO

We report on the design and performance of a fiber-based, multi-channel laser amplifier seed pulse distribution system. The device is designed to condition and distribute low energy laser pulses from a mode-locked oscillator to multiple, highly synchronized, high energy amplifiers integrated into a laser beamline. Critical functions such as temporal pulse stretching well beyond 100 ps/nm, pulse picking, and fine control over the pulse delay up to 300 ps are all performed in fiber eliminating the need for bulky and expensive grating stretchers, Pockels cells, and delay lines. These functions are characterized and the system as a whole is demonstrated by seeding two high energy amplifiers in the laser beamline. The design of this system allows for complete computer control of all functions, including tuning of dispersion, and is entirely hands-free. The performance of this device and its subsystems will be relevant to those developing lasers where reliability, size, and cost are key concerns in addition to performance; this includes those developing large-scale laser systems similar to ours and also those developing table-top experiments and commercial systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...