RESUMO
Common snook (Centropomus undecimalis) is one of the most important marine species under commercial exploitation in the Gulf of Mexico; for this reason, interest in developing its culture is a priority. However, larviculture remains as the main bottleneck for massive production. In this sense, our objective was to determine the changes of digestive enzymes activities using biochemical and electrophoretic techniques during 36 days of Common snook larviculture fed with live preys (microalgae, rotifers, and Artemia). During larviculture, all digestive enzymatic activities were detected with low values since yolk absorption, 2 days after hatching (dah) onwards. However, the maximum values for alkaline protease (6,500 U mg protein(-1)), trypsin (0.053 mU × 10(-3) mg protein(-1)), and Leucine aminopeptidase (1.4 × 10(-3) mU mg protein(-1)) were detected at 12 dah; for chymotrypsin at 25 dah (3.8 × 10(-3) mU mg protein(-1)), for carboxypeptidase A (280 mU mg protein(-1)) and lipase at 36 dah (480 U mg protein(-1)), for α-amylase at 7 dah (1.5 U mg protein(-1)), for acid phosphatases at 34 dah (5.5 U mg protein(-1)), and finally for alkaline phosphatase at 25 dah (70 U mg protein(-1)). The alkaline protease zymogram showed two active bands, the first (26.3 kDa) at 25 dah onwards, and the second (51.6 kDa) at 36 dah. The acid protease zymogram showed two bands (RF = 0.32 and 0.51, respectively) at 34 dah. The digestive enzymatic ontogeny of C. undecimalis is very similar to other strictly marine carnivorous fish, and we suggest that weaning process should be started at 34 dah.