Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 240
Filtrar
3.
medRxiv ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38562855

RESUMO

Background: Hypertension in adolescence is associated with subclinical target organ injury (TOI). We aimed to determine whether different blood pressure (BP) thresholds were associated with increasing number of TOI markers in healthy adolescents. Methods: 244 participants (mean age 15.5±1.8 years, 60.1% male) were studied. Participants were divided based on both systolic clinic and ambulatory BP (ABP), into low- (<75 th percentile), mid- (75 th -90 th percentile) and high-risk (>90 th percentile) groups. TOI assessments included left ventricular mass, systolic and diastolic function, and vascular stiffness. The number of TOI markers for each participant was calculated. A multivariable general linear model was constructed to evaluate the association of different participant characteristics with higher numbers of TOI markers. Results: 47.5% of participants had at least one TOI marker: 31.2% had one, 11.9% two, 3.7% three, and 0.8% four. The number of TOI markers increased according to the BP risk groups: the percentage of participants with more than one TOI in the low-, mid-, and high groups based on clinic BP was 6.7%, 19.1%, and 21.8% (p=0.02), and based on ABP was 9.6%, 15.8%, and 32.2% (p<0.001). In a multivariable regression analysis, both clinic BP percentile and ambulatory SBP index were independently associated with the number of TOI markers. When both clinic and ABP were included in the model, only the ambulatory SBP index was significantly associated with the number of markers. Conclusion: High SBP, especially when assessed by ABPM, was associated with an increasing number of subclinical cardiovascular injury markers in adolescents.

4.
5.
Transl Res ; 267: 1-9, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38195017

RESUMO

Heterogeneous nuclear ribonucleoprotein F (HnRNP F) is a key regulator for nucleic acid metabolism; however, whether HnRNP F expression is important in maintaining podocyte integrity is unclear. Nephroseq analysis from a registry of human kidney biopsies was performed. Age- and sex-matched podocyte-specific HnRNP F knockout (HnRNP FPOD KO) mice and control (HnRNP Ffl/fl) were studied. Podocytopathy was induced in male mice (more susceptible) either by adriamycin (ADR)- or low-dose streptozotocin treatment for 2 or 8 weeks. The mouse podocyte cell line (mPODs) was used in vitro. Nephroseq data in three human cohorts were varied greatly. Both sexes of HnRNP FPOD KO mice were fertile and appeared grossly normal. However, male 20-week-old HnRNP FPOD KO than HnRNP Ffl/fl mice had increased urinary albumin/creatinine ratio, and lower expression of podocyte markers. ADR- or diabetic- HnRNP FPOD KO (vs. HnRNP Ffl/fl) mice had more severe podocytopathy. Moreover, methyltransferase-like 14 (Mettl14) gene expression was increased in podocytes from HnRNP FPOD KO mice, further enhanced in ADR- or diabetic-treated HnRNP FPOD KO mice. Consequently, this elevated Mettl14 expression led to sirtuin1 (Sirt1) inhibition, associated with podocyte loss. In mPODs, knock-down of HnRNP F promoted Mettl14 nuclear translocation, which was associated with podocyte dysmorphology and Sirt1 inhibition-mediated podocyte loss. This process was more severe in ADR- or high glucose- treated mPODs. Conclusion: HnRNP F deficiency in podocytes promotes podocytopathy through activation of Mettl14 expression and its nuclear translocation to inhibit Sirt1 expression, underscoring the protective role of HnRNP F against podocyte injury.


Assuntos
Diabetes Mellitus , Podócitos , Feminino , Camundongos , Masculino , Humanos , Animais , Podócitos/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo F-H/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo F-H/metabolismo , Diabetes Mellitus/metabolismo , Metiltransferases/metabolismo
6.
Acta Paediatr ; 113(1): 8-9, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37916611
10.
Antioxidants (Basel) ; 12(9)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37760019

RESUMO

The role(s) of nuclear factor erythroid 2-related factor 2 (NRF2) in diabetic kidney disease (DKD) is/are controversial. We hypothesized that Nrf2 deficiency in type 2 diabetes (T2D) db/db mice (db/dbNrf2 knockout (KO)) attenuates DKD progression through the down-regulation of angiotensinogen (AGT), sodium-glucose cotransporter-2 (SGLT2), scavenger receptor CD36, and fatty -acid-binding protein 4 (FABP4), and lipid accumulation in renal proximal tubular cells (RPTCs). Db/dbNrf2 KO mice were studied at 16 weeks of age. Human RPTCs (HK2) with NRF2 KO via CRISPR-Cas9 genome editing and kidneys from patients with or without T2D were examined. Compared with db/db mice, db/dbNrf2 KO mice had lower systolic blood pressure, fasting blood glucose, kidney hypertrophy, glomerular filtration rate, urinary albumin/creatinine ratio, tubular lipid droplet accumulation, and decreased expression of AGT, SGLT2, CD36, and FABP4 in RPTCs. Male and female mice had similar results. NRF2 KO attenuated the stimulatory effect of the Nrf2 activator, oltipraz, on AGT, SGLT2, and CD36 expression and high-glucose/free fatty acid (FFA)-stimulated lipid accumulation in HK2. Kidneys from T2D patients exhibited markedly higher levels of CD36 and FABP4 in RPTCs than kidneys from non-diabetic patients. These data suggest that NRF2 exacerbates DKD through the stimulation of AGT, SGLT2, CD36, and FABP4 expression and lipid accumulation in RPTCs of T2D.

16.
Kidney Int ; 103(1): 28-30, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36603980

RESUMO

Children and youth with a congenital or acquired single functioning kidney are at risk for development of kidney injury and chronic kidney disease. How best to use surrogate measures associated with risk factors poses many problems. The risk of progressive kidney disease for those with a single functioning kidney varies, and how to assess it remains imperfect. Developing better measures to determine the risk of chronic kidney disease-renal functional reserve and imaging that includes nephron number-may be within reach and would likely positively affect the outcome.


Assuntos
Insuficiência Renal Crônica , Rim Único , Criança , Adolescente , Humanos , Rim/diagnóstico por imagem , Néfrons , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/epidemiologia , Fatores de Risco
17.
Diabetologia ; 66(1): 223-240, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36260124

RESUMO

AIMS/HYPOTHESIS: Senescent renal tubular cells may be linked to diabetic kidney disease (DKD)-related tubulopathy. We studied mice with or without diabetes in which hedgehog interacting protein (HHIP) was present or specifically knocked out in renal tubules (HhipRT-KO), hypothesising that local deficiency of HHIP in the renal tubules would attenuate tubular cell senescence, thereby preventing DKD tubulopathy. METHODS: Low-dose streptozotocin was employed to induce diabetes in both HhipRT-KO and control (Hhipfl/fl) mice. Transgenic mice overexpressing Hhip in renal proximal tubular cells (RPTC) (HhipRPTC-Tg) were used for validation, and primary RPTCs and human RPTCs (HK2) were used for in vitro studies. Kidney morphology/function, tubular senescence and the relevant molecular measurements were assessed. RESULTS: Compared with Hhipfl/fl mice with diabetes, HhipRT-KO mice with diabetes displayed lower blood glucose levels, normalised GFR, ameliorated urinary albumin/creatinine ratio and less severe DKD, including tubulopathy. Sodium-glucose cotransporter 2 (SGLT2) expression was attenuated in RPTCs of HhipRT-KO mice with diabetes compared with Hhipfl/fl mice with diabetes. In parallel, an increased tubular senescence-associated secretory phenotype involving release of inflammatory cytokines (IL-1ß, IL-6 and monocyte chemoattractant protein-1) and activation of senescence markers (p16, p21, p53) in Hhipfl/fl mice with diabetes was attenuated in HhipRT-KO mice with diabetes. In contrast, HhipRPTC-Tg mice had increased tubular senescence, which was inhibited by canagliflozin in primary RPTCs. In HK2 cells, HHIP overexpression or recombinant HHIP increased SGLT2 protein expression and promoted cellular senescence by targeting both ataxia-telangiectasia mutated and ataxia-telangiectasia and Rad3-related-mediated cell arrest. CONCLUSIONS/INTERPRETATION: Tubular HHIP deficiency prevented DKD-related tubulopathy, possibly via the inhibition of SGLT2 expression and cellular senescence.


Assuntos
Proteínas de Transporte , Diabetes Mellitus Tipo 1 , Glicoproteínas de Membrana , Transportador 2 de Glucose-Sódio , Animais , Humanos , Camundongos , Diabetes Mellitus Tipo 1/genética , Células Epiteliais , Proteínas Hedgehog , Transportador 2 de Glucose-Sódio/genética , Proteínas de Transporte/genética , Glicoproteínas de Membrana/genética , Camundongos Transgênicos , Diabetes Mellitus Experimental/genética , Túbulos Renais/citologia , Senescência Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...