Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 40(43): 11396-401, 2011 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-21833402

RESUMO

Copper-, manganese-, and zinc-based ionic liquids (Cu{NH(2)CH(2)CH(2)OH}(6)[CH(3)(CH(2))(3)CH(C(2)H(5))CO(2)](2) (2), Cu{NH(CH(2)CH(2)OH)(2)}(6)[CH(3)(CH(2))(3)CH(C(2)H(5))CO(2)](2) (3A), Cu{NH(CH(2)CH(2)OH)(2)}(6)[CF(3)SO(3)](2) (3B), Cu{NH(CH(2)CH(2)OH)(2)}(6)[(CF(3)SO(2))(2)N](2) (3C), Mn{NH(CH(2)CH(2)OH)(2)}(6)[CF(3)SO(3)](2) (4), and Zn{NH(2)CH(2)CH(2)OH}(6)[CF(3)SO(3)](2) (5)) are synthesized in a single-step reaction. Infrared data suggest that ethanolamine preferentially coordinates to the metal center through the amine group in 2 and the hydroxyl group in 5. In addition, diethanolamine coordinates through the amine group in 3A, 3C, and 4 and the hydroxyl group in 3B. The compounds are viscous (>1000 cP) at room temperature, but two (3C and 4) display specific conductivities that are reasonably high for ionic liquids (>20 mS cm(-1)). All of the compounds display a glass transition (T(g)) below -50 °C. The cyclic voltammograms (CVs) of 2, 3A, 3B, and 3C display a single quasi-reversible wave associated with Cu(II)/Cu(I) reduction and re-oxidation while 5 shows a wave attributed to Zn(II)/Zn(0) reduction and stripping (re-oxidation). Compound 4 is the first in this new family of transition metal-based ionic liquids (MetILs) to display reversible Mn(II)/Mn(III) oxidation and re-reduction at 50 mV s(-1) using a glassy carbon working electrode.

2.
Dalton Trans ; 39(37): 8609-12, 2010 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-20697626

RESUMO

An iron-based ionic liquid, Fe((OHCH(2)CH(2))(2)NH)(6)(CF(3)SO(3))(3), is synthesized in a single-step complexation reaction. Infrared and Raman data suggest NH(CH(2)CH(2)OH)(2) primarily coordinates to Fe(iii) through alcohol groups. The compound has T(g) and T(d) values of -64 degrees C and 260 degrees C, respectively. Cyclic voltammetry reveals quasi-reversible Fe(iii)/Fe(ii) reduction waves.

3.
Inorg Chem ; 46(6): 2067-79, 2007 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-17298051

RESUMO

The highly charged dodecaniobate Keggin ions [XNb12O40](-16) (X = Si, Ge) and [XNb12O40](-15) (X = P) serve as building blocks of self-assembled, low-dimensional anionic framework materials. In addition to its high charge, the Keggin ion provides optimal binding geometries that render these materials as attractive metal sorbents and ion exchangers. We describe here the synthesis and single-crystal X-ray structure of K(10-x)[Nb2O2][HxGeNb12O40].11H2O (GeNb12-2d; x = approximately 1-1.5), a phase featuring 2D linkage of [GeNb12O40](-16) Keggin ions interlayered with charge-balancing K(+) cations and water molecules. Thermogravimetry, infrared spectroscopy (IR), 1H MAS NMR, and D2O exchange experiments as well as computational studies were used to describe the location and behavior of these interlayer, extraframework species. To model the basicity of the different types of framework oxygen sites appropriately, atomic-centered partial charges were derived from density functional theory (DFT) calculations to model the electrostatic potential. This model enabled the locations and bonding of K(+) cations associated with the framework, as well as K(+) cations bound predominantly to water in the interlayer space, to be accurately computed via Monte Carlo simulation. The poorest agreement between experimental and simulation results was observed for potassium sites that were associated with disordered portions of the framework, namely, the [Nb2O2](6+) bridge between Keggin ions. Finally, through grand canonical Monte Carlo (GCMC) calculations, saturation water loadings consistent with experimental measurements were computed.

4.
Inorg Chem ; 44(16): 5934-40, 2005 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-16060649

RESUMO

The fundamental chemical behavior of the AlCl(3)/SO(2)Cl(2) catholyte system was investigated using (27)Al NMR spectroscopy, Raman spectroscopy, and single-crystal X-ray diffraction. Three major Al-containing species were found to be present in this catholyte system, where the ratio of each was dependent upon aging time, concentration, and/or storage temperature. The first species was identified as [Cl(2)Al(mu-Cl)](2) in equilibrium with AlCl(3). The second species results from the decomposition of SO(2)Cl(2) which forms Cl(2)(g) and SO(2)(g). The SO(2)(g) is readily consumed in the presence of AlCl(3) to form the crystallographically characterized species [Cl(2)Al(mu-O(2)SCl)](2) (1). For 1, each Al is tetrahedrally (T(d)) bound by two terminal Cl and two mu-O ligands whereas, the S is three-coordinated by two mu-O ligands and one terminal Cl. The third molecular species also has T(d)-coordinated Al metal centers but with increased oxygen coordination. Over time it was noted that a precipitate formed from the catholyte solutions. Raman spectroscopic studies show that this gel or precipitate has a component that was consistent with thionyl chloride. We have proposed a polymerization scheme that accounts for the precipitate formation. Further NMR studies indicate that the precipitate is in equilibrium with the solution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...