Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosecur Bioterror ; 12(5): 247-53, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25254913

RESUMO

In 2011, President Obama addressed the United Nations General Assembly and urged the global community to come together to prevent, detect, and fight every kind of biological danger, whether a pandemic, terrorist threat, or treatable disease. Over the past decade, the United States and key international partners have addressed these dangers through a variety of programs and strategies aimed at developing and enhancing countries' capacity to rapidly detect, assess, report, and respond to acute biological threats. Despite our collective efforts, however, an increasingly interconnected world presents heightened opportunities for human, animal, and zoonotic diseases to emerge and spread globally. Further, the technical capabilities required to develop biological agents into a weapon are relatively low. The launch of the Global Health Security Agenda (GHSA) provides an opportunity for the international community to enhance the linkages between the health and security sectors, accelerating global efforts to prevent avoidable epidemics and bioterrorism, detect threats early, and respond rapidly and effectively to biological threats. The US Department of Defense (DoD) plays a key role in achieving GHSA objectives through its force health protection, threat reduction, and biodefense efforts at home and abroad. This article focuses on GHSA activities conducted in the DoD Office of the Assistant Secretary of Defense for Nuclear, Chemical, and Biological Defense.


Assuntos
Bioterrorismo/prevenção & controle , Controle de Doenças Transmissíveis/organização & administração , Surtos de Doenças/prevenção & controle , Saúde Global , Medidas de Segurança , United States Department of Defense , Animais , Humanos , Cooperação Internacional , Objetivos Organizacionais , Estados Unidos
2.
FEMS Microbiol Rev ; 36(1): 256-66, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22092065

RESUMO

Cytoskeletal proteins are important mediators of cellular organization in both eukaryotes and bacteria. In the past, cytoskeletal studies have largely focused on three major cytoskeletal families, namely the eukaryotic actin, tubulin, and intermediate filament (IF) proteins and their bacterial homologs MreB, FtsZ, and crescentin. However, mounting evidence suggests that these proteins represent only the tip of the iceberg, as the cellular cytoskeletal network is far more complex. In bacteria, each of MreB, FtsZ, and crescentin represents only one member of large families of diverse homologs. There are also newly identified bacterial cytoskeletal proteins with no eukaryotic homologs, such as WACA proteins and bactofilins. Furthermore, there are universally conserved proteins, such as the metabolic enzyme CtpS, that assemble into filamentous structures that can be repurposed for structural cytoskeletal functions. Recent studies have also identified an increasing number of eukaryotic cytoskeletal proteins that are unrelated to actin, tubulin, and IFs, such that expanding our understanding of cytoskeletal proteins is advancing the understanding of the cell biology of all organisms. Here, we summarize the recent explosion in the identification of new members of the bacterial cytoskeleton and describe a hypothesis for the evolution of the cytoskeleton from self-assembling enzymes.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Multimerização Proteica
3.
Nat Cell Biol ; 12(8): 739-46, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20639870

RESUMO

Filament-forming cytoskeletal proteins are essential for the structure and organization of all cells. Bacterial homologues of the major eukaryotic cytoskeletal families have now been discovered, but studies suggest that yet more remain to be identified. We demonstrate that the metabolic enzyme CTP synthase (CtpS) forms filaments in Caulobacter crescentus. CtpS is bifunctional, as the filaments it forms regulate the curvature of C. crescentus cells independently of its catalytic function. The morphogenic role of CtpS requires its functional interaction with the intermediate filament, crescentin (CreS). Interestingly, the Escherichia coli CtpS homologue also forms filaments both in vivo and in vitro, suggesting that CtpS polymerization may be widely conserved. E. coli CtpS can replace the enzymatic and morphogenic functions of C. crescentus CtpS, indicating that C. crescentus has adapted a conserved filament-forming protein for a secondary role. These results implicate CtpS as a novel bifunctional member of the bacterial cytoskeleton and suggest that localization and polymerization may be important properties of metabolic enzymes.


Assuntos
Proteínas de Bactérias/metabolismo , Carbono-Nitrogênio Ligases/metabolismo , Citoesqueleto/metabolismo , Caulobacter crescentus/enzimologia , Caulobacter crescentus/metabolismo , Microscopia de Fluorescência , Microscopia de Contraste de Fase , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...