Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Dis Model Mech ; 17(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38736327

RESUMO

Heterotopic ossification is the inappropriate formation of bone in soft tissues of the body. It can manifest spontaneously in rare genetic conditions or as a response to injury, known as acquired heterotopic ossification. There are several experimental models for studying acquired heterotopic ossification from different sources of damage. However, their tenuous mechanistic relevance to the human condition, invasive and laborious nature and/or lack of amenability to chemical and genetic screens, limit their utility. To address these limitations, we developed a simple zebrafish injury model that manifests heterotopic ossification with high penetrance in response to clinically emulating injuries, as observed in human myositis ossificans traumatica. Using this model, we defined the transcriptional response to trauma, identifying differentially regulated genes. Mutant analyses revealed that an increase in the activity of the potassium channel Kcnk5b potentiates injury response, whereas loss of function of the interleukin 11 receptor paralogue (Il11ra) resulted in a drastically reduced ossification response. Based on these findings, we postulate that enhanced ionic signalling, specifically through Kcnk5b, regulates the intensity of the skeletogenic injury response, which, in part, requires immune response regulated by Il11ra.


Assuntos
Ossificação Heterotópica , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/genética , Ossificação Heterotópica/genética , Ossificação Heterotópica/patologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Regulação da Expressão Gênica , Envelhecimento/genética , Envelhecimento/patologia , Ferimentos e Lesões/complicações , Ferimentos e Lesões/genética , Ferimentos e Lesões/patologia , Modelos Animais de Doenças , Mutação/genética
2.
Microbiol Spectr ; 11(6): e0228223, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37982630

RESUMO

IMPORTANCE: New drugs are needed to combat multidrug-resistant tuberculosis. The electron transport chain (ETC) maintains the electrochemical potential across the cytoplasmic membrane and allows the production of ATP, the energy currency of any living cell. The mycobacterial engine F-ATP synthase catalyzes the formation of ATP and has come into focus as an attractive and rich drug target. Recent deep insights into these mycobacterial F1FO-ATP synthase elements opened the door for a renaissance of structure-based target identification and inhibitor design. In this study, we present the GaMF1.39 antimycobacterial compound, targeting the rotary subunit γ of the biological engine. The compound is bactericidal, inhibits infection ex vivo, and displays enhanced anti-tuberculosis activity in combination with ETC inhibitors, which promises new strategies to shorten tuberculosis chemotherapy.


Assuntos
Clofazimina , Mycobacterium tuberculosis , Clofazimina/farmacologia , Clofazimina/uso terapêutico , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Trifosfato de Adenosina
3.
JAC Antimicrob Resist ; 5(3): dlad052, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37168836

RESUMO

Background: Mycobacterium abscessus is a non-tuberculous mycobacterium (NTM) that causes chronic pulmonary infections. Because of its extensive innate resistance to numerous antibiotics, treatment options are limited, often resulting in poor clinical outcomes. Current treatment regimens usually involve a combination of antibiotics, with clarithromycin being the cornerstone of NTM treatments. Objectives: To identify drug candidates that exhibit synergistic activity with clarithromycin against M. abscessus. Methods: We performed cell-based phenotypic screening of a compound library against M. abscessus induced to become resistant to clarithromycin. Furthermore, we evaluated the toxicity and efficacy of the top compound in a zebrafish embryo infection model. Results: The screen revealed rifaximin as a clarithromycin potentiator. The combination of rifaximin and clarithromycin was synergistic and bactericidal in vitro and potent in the zebrafish model. Conclusions: The data indicate that the rifaximin/clarithromycin combination is promising to effectively treat pulmonary NTM infections.

4.
Open Biol ; 12(8): 220104, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35946311

RESUMO

Cilia are organelles for cellular signalling and motility. Mutations affecting ciliary function are also associated with cilia-related disorders (ciliopathies). The identification of cilia markers is critical for studying their function at the cellular level. Due to the lack of a conserved, short ciliary localization motif, the full-length ARL13b or 5HT6 proteins are normally used for cilia labelling. Overexpression of these genes, however, can affect the function of cilia, leading to artefacts in cilia studies. Here, we show that Nephrocystin-3 (Nphp3) is highly conserved among vertebrates and demonstrate that the N-terminal truncated peptide of zebrafish Nphp3 can be used as a gratuitous cilia-specific marker. To visualize the dynamics of cilia in vivo, we generated a stable transgenic zebrafish Tg (ß-actin: nphp3N-mCherry)sx1001. The cilia in multiple cell types are efficiently labelled by the encoded fusion protein from embryonic stages to adulthood, without any developmental and physiological defects. We show that the line allows live imaging of ciliary dynamics and trafficking of cilia proteins, such as Kif7 and Smo, key regulators of the Hedgehog signalling pathway. Thus, we have generated an effective new tool for in vivo cilia studies that will help shed further light on the roles of these important organelles.


Assuntos
Cílios , Peixe-Zebra , Animais , Animais Geneticamente Modificados , Cílios/genética , Cílios/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Mutação
5.
PLoS Pathog ; 18(4): e1010389, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35446924

RESUMO

Meningitis caused by infectious pathogens is associated with vessel damage and infarct formation, however the physiological cause is often unknown. Cryptococcus neoformans is a human fungal pathogen and causative agent of cryptococcal meningitis, where vascular events are observed in up to 30% of patients, predominantly in severe infection. Therefore, we aimed to investigate how infection may lead to vessel damage and associated pathogen dissemination using a zebrafish model that permitted noninvasive in vivo imaging. We find that cryptococcal cells become trapped within the vasculature (dependent on their size) and proliferate there resulting in vasodilation. Localised cryptococcal growth, originating from a small number of cryptococcal cells in the vasculature was associated with sites of dissemination and simultaneously with loss of blood vessel integrity. Using a cell-cell junction tension reporter we identified dissemination from intact blood vessels and where vessel rupture occurred. Finally, we manipulated blood vessel tension via cell junctions and found increased tension resulted in increased dissemination. Our data suggest that global vascular vasodilation occurs following infection, resulting in increased vessel tension which subsequently increases dissemination events, representing a positive feedback loop. Thus, we identify a mechanism for blood vessel damage during cryptococcal infection that may represent a cause of vascular damage and cortical infarction during cryptococcal meningitis.


Assuntos
Criptococose , Cryptococcus neoformans , Meningite Criptocócica , Animais , Criptococose/microbiologia , Humanos , Peixe-Zebra
6.
Biochimie ; 196: 171-181, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34715269

RESUMO

Musculoskeletal injuries are common in humans. The cascade of cellular and molecular events following such injuries results either in healing with functional recovery or scar formation. While fibrotic scar tissue serves to bridge between injured planes, it undermines functional integrity. Hence, faithful regeneration is the most desired outcome; however, the potential to regenerate is limited in humans. In contrast, various non-mammalian vertebrates have fascinating capabilities of regenerating even an entire appendage following amputation. Among them, zebrafish is an important and accessible laboratory model organism, sharing striking similarities with mammalian embryonic musculoskeletal development. Moreover, clinically relevant muscle and skeletal injury zebrafish models recapitulate mammalian regeneration. Upon muscle injury, quiescent stem cells - known as satellite cells - become activated, proliferate, differentiate and fuse to form new myofibres, while bone fracture results in a phased response involving hematoma formation, inflammation, fibrocartilaginous callus formation, bony callus formation and remodelling. These models are well suited to testing gene- or pharmaco-therapy for the benefit of conditions like muscle tears and fractures. Insights from further studies on whole body part regeneration, a hallmark of the zebrafish model, have the potential to complement regenerative strategies to achieve faster and desired healing following injuries without any scar formation and, in the longer run, drive progress towards the realisation of large-scale regeneration in mammals. Here, we provide an overview of the basic mechanisms of musculoskeletal regeneration, highlight the key features of zebrafish as a regenerative model and outline the relevant studies that have contributed to the advancement of this field.


Assuntos
Cicatriz , Peixe-Zebra , Animais , Mamíferos , Células-Tronco , Cicatrização , Peixe-Zebra/fisiologia
8.
Autophagy ; 17(6): 1448-1457, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32559122

RESUMO

Macroautophagy/autophagy functions to degrade cellular components and intracellular pathogens. Autophagy receptors, including SQSTM1/p62, target intracellular pathogens. Staphylococcus aureus is a significant pathogen of humans, especially in immunocompromise. S. aureus may use neutrophils as a proliferative niche, but their intracellular fate following phagocytosis has not been analyzed in vivo. In vitro, SQSTM1 can colocalize with intracellular Staphylococcus aureus, but whether SQSTM1 is beneficial or detrimental in host defense against S. aureus in vivo is unknown. Here we determine the fate and location of S. aureus within neutrophils throughout zebrafish infection. We show Lc3 and Sqstm1 recruitment to phagocytosed S. aureus is altered depending on the bacterial location within the neutrophil and that Lc3 marking of bacterial phagosomes within neutrophils may precede bacterial degradation. Finally, we show Sqstm1 is important for controlling cytosolic bacteria, demonstrating for the first time a key role of Sqstm1 in autophagic control of S. aureus in neutrophils.Abbreviations: AR: autophagy receptor; CFU: colony-forming unit; CHT: caudal hematopoietic tissue; GFP: green fluorescent protein; hpf: hours post-fertilization; hpi: hours post-infection; LWT: london wild-type: lyz: lysozyme; Map1lc3/Lc3: microtubule-associated protein 1 light chain 3; RFP: red fluorescent protein; Sqstm1/p62: sequestosome 1; Tg: transgenic; TSA: tyramide signal amplification; UBD: ubiquitin binding domain.


Assuntos
Autofagia/fisiologia , Neutrófilos/metabolismo , Proteína Sequestossoma-1/metabolismo , Animais , Animais Geneticamente Modificados/metabolismo , Macrófagos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fagossomos/metabolismo , Staphylococcus aureus , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
10.
Dis Model Mech ; 13(9)2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32988985

RESUMO

Heterotopic ossification (HO) is a disorder characterised by the formation of ectopic bone in soft tissue. Acquired HO typically occurs in response to trauma and is relatively common, yet its aetiology remains poorly understood. Genetic forms, by contrast, are very rare, but provide insights into the mechanisms of HO pathobiology. Fibrodysplasia ossificans progressiva (FOP) is the most debilitating form of HO. All patients reported to date carry heterozygous gain-of-function mutations in the gene encoding activin A receptor type I (ACVR1). These mutations cause dysregulated bone morphogenetic protein (BMP) signalling, leading to HO at extraskeletal sites including, but not limited to, muscles, ligaments, tendons and fascia. Ever since the identification of the causative gene, developing a cure for FOP has been a focus of investigation, and studies have decoded the pathophysiology at the molecular and cellular levels, and explored novel management strategies. Based on the established role of BMP signalling throughout HO in FOP, therapeutic modalities that target multiple levels of the signalling cascade have been designed, and some drugs have entered clinical trials, holding out hope of a cure. A potential role of other signalling pathways that could influence the dysregulated BMP signalling and present alternative therapeutic targets remains a matter of debate. Here, we review the recent FOP literature, including pathophysiology, clinical aspects, animal models and current management strategies. We also consider how this research can inform our understanding of other types of HO and highlight some of the remaining knowledge gaps.


Assuntos
Miosite Ossificante/patologia , Pesquisa Translacional Biomédica , Receptores de Ativinas Tipo I/química , Receptores de Ativinas Tipo I/genética , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Modelos Animais de Doenças , Humanos , Mutação/genética , Miosite Ossificante/diagnóstico , Miosite Ossificante/genética , Miosite Ossificante/fisiopatologia
11.
Dev Biol ; 466(1-2): 99-108, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32687892

RESUMO

South American Gymnotiform knifefish possess electric organs that generate electric fields for electro-location and electro-communication. Electric organs in fish can be derived from either myogenic cells (myogenic electric organ/mEO) or neurogenic cells (neurogenic electric organ/nEO). To date, the embryonic development of EOs has remained obscure. Here we characterize the development of the mEO in the Gymnotiform bluntnose knifefish, Brachyhypopomus gauderio. We find that EO primordial cells arise during embryonic stages in the ventral edge of the tail myotome, translocate into the ventral fin and develop into syncytial electrocytes at early larval stages. We also describe a pair of thick nerve cords that flank the dorsal aorta, the location and characteristic morphology of which are reminiscent of the nEO in Apteronotid species, suggesting a common evolutionary origin of these tissues. Taken together, our findings reveal the embryonic origins of the mEO and provide a basis for elucidating the mechanisms of evolutionary diversification of electric charge generation by myogenic and neurogenic EOs.


Assuntos
Evolução Biológica , Órgão Elétrico/embriologia , Embrião não Mamífero/embriologia , Gimnotiformes/embriologia , Animais
13.
BMC Biol ; 17(1): 17, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30795745

RESUMO

Recent technical advances have provided unprecedented insights into the selective deployment of the genome in developing organisms, but how such differential gene expression is used to sculpt the complex shapes and sizes of organs remains unclear. Here, we outline major open questions in organogenesis and suggest how a synthesis between developmental biology and physics can help to address them.


Assuntos
Biologia do Desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Genoma , Organogênese/fisiologia , Animais , Modelos Biológicos
14.
Development ; 145(21)2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30413531

RESUMO

First described in Drosophila, Hedgehog signalling is a key regulator of embryonic development and tissue homeostasis and its dysfunction underlies a variety of human congenital anomalies and diseases. Although now recognised as a major target for cancer therapy as well as a mediator of directed stem cell differentiation, the unveiling of the function and mechanisms of Hedgehog signalling was driven largely by an interest in basic developmental biology rather than clinical need. Here, I describe how curiosity about embryonic patterning led to the identification of the family of Hedgehog signalling proteins and the pathway that transduces their activity, and ultimately to the development of drugs that block this pathway.


Assuntos
Padronização Corporal , Drosophila/embriologia , Neoplasias/terapia , Animais , Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog , Humanos , Transdução de Sinais
15.
Dev Cell ; 46(6): 735-750.e4, 2018 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-30253169

RESUMO

Somitic cells give rise to a variety of cell types in response to Hh, BMP, and FGF signaling. Cell position within the developing zebrafish somite is highly dynamic: how, when, and where these signals specify cell fate is largely unknown. Combining four-dimensional imaging with pathway perturbations, we characterize the spatiotemporal specification and localization of somitic cells. Muscle formation is guided by highly orchestrated waves of cell specification. We find that FGF directly and indirectly controls the differentiation of fast and slow-twitch muscle lineages, respectively. FGF signaling imposes tight temporal control on Shh induction of slow muscles by regulating the time at which fast-twitch progenitors displace slow-twitch progenitors from contacting the Shh-secreting notochord. Further, we find a reciprocal regulation of fast and slow muscle differentiation, morphogenesis, and migration. In conclusion, robust cell fate determination in the developing somite requires precise spatiotemporal coordination between distinct cell lineages and signaling pathways.


Assuntos
Linhagem da Célula , Fatores de Crescimento de Fibroblastos/metabolismo , Proteínas Hedgehog/metabolismo , Músculo Esquelético/embriologia , Mioblastos/citologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Diferenciação Celular , Células Cultivadas , Morfogênese , Mioblastos/metabolismo , Transdução de Sinais , Peixe-Zebra/fisiologia
16.
Sci Rep ; 8(1): 12534, 2018 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-30120317

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

17.
Sci Signal ; 11(516)2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29438014

RESUMO

The morphogen Sonic Hedgehog (SHH) patterns tissues during development by directing cell fates in a concentration-dependent manner. The SHH signal is transmitted across the membrane of target cells by the heptahelical transmembrane protein Smoothened (SMO), which activates the GLI family of transcription factors through a mechanism that is undefined in vertebrates. Using CRISPR-edited null alleles and small-molecule inhibitors, we systematically analyzed the epistatic interactions between SMO and three proteins implicated in SMO signaling: the heterotrimeric G protein subunit GαS, the G protein-coupled receptor kinase 2 (GRK2), and the GαS-coupled receptor GPR161. Our experiments uncovered a signaling mechanism that modifies the sensitivity of target cells to SHH and consequently changes the shape of the SHH dose-response curve. In both fibroblasts and spinal neural progenitors, the loss of GPR161, previously implicated as an inhibitor of basal SHH signaling, increased the sensitivity of target cells across the entire spectrum of SHH concentrations. Even in cells lacking GPR161, GRK2 was required for SHH signaling, and Gαs, which promotes the activation of protein Kinase A (PKA), antagonized SHH signaling. We propose that the sensitivity of target cells to Hedgehog morphogens, and the consequent effects on gene expression and differentiation outcomes, can be controlled by signals from G protein-coupled receptors that converge on Gαs and PKA.


Assuntos
Proteínas Hedgehog/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Receptor Smoothened/metabolismo , Animais , Células Cultivadas , Cromograninas/genética , Cromograninas/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Epistasia Genética , Quinase 2 de Receptor Acoplado a Proteína G/genética , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Proteínas Hedgehog/genética , Humanos , Camundongos , Células NIH 3T3 , Receptores Acoplados a Proteínas G/genética , Receptor Smoothened/genética
18.
Sci Rep ; 8(1): 2211, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29396404

RESUMO

Ciliopathies are human disorders caused by dysfunction of primary cilia, ubiquitous microtubule-based organelles involved in signal transduction. Cilia are anchored inside the cell through basal bodies (BBs), modified centrioles also acting as microtubule-organization centers. Photoreceptors (PRs) are sensory neurons, whose primary cilium forms a highly specialized compartment called the outer segment (OS) responsible for sensing incoming light. Thus, ciliopathies often present with retinal degeneration. Mutations in KIAA0586/TALPID3 (TA3) cause Joubert syndrome, in which 30% of affected individuals develop retinal involvement. To elucidate the function of TALPID3 in PRs, we studied talpid3 zebrafish mutants and identified a progressive retinal degeneration phenotype. The majority of PRs lack OS development due to defects in BB positioning and docking at the apical cell surface. Intracellular accumulation of the photopigment opsin leads to PR cell death of moderate severity. Electroretinograms demonstrate severe visual impairement. A small subset of PRs display normally docked BBs and extended OSs through rescue by maternally-deposited Talpid3. While localization of the small GTPase Rab8a, which plays an important role in BB docking, appears unaffected in talpid3-/- PRs, overexpression of constitutively active Rab8a rescues OS formation, indicating that the role of Ta3 in early ciliogenesis lies upstream of Rab8a activation in PRs.


Assuntos
Ciliopatias/patologia , GTP Fosfo-Hidrolases/metabolismo , Proteínas Mutantes/metabolismo , Biogênese de Organelas , Células Fotorreceptoras/patologia , Degeneração Retiniana/patologia , Proteínas de Peixe-Zebra/metabolismo , Animais , Sobrevivência Celular , Modelos Animais de Doenças , Eletrorretinografia , Proteínas Mutantes/genética , Opsinas/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
20.
Dev Biol ; 430(1): 90-104, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28807781

RESUMO

Chordates are characterised by contractile muscle on either side of the body that promotes movement by side-to-side undulation. In the lineage leading to modern jawed vertebrates (crown group gnathostomes), this system was refined: body muscle became segregated into distinct dorsal (epaxial) and ventral (hypaxial) components that are separately innervated by the medial and hypaxial motors column, respectively, via the dorsal and ventral ramus of the spinal nerves. This allows full three-dimensional mobility, which in turn was a key factor in their evolutionary success. How the new gnathostome system is established during embryogenesis and how it may have evolved in the ancestors of modern vertebrates is not known. Vertebrate Engrailed genes have a peculiar expression pattern as they temporarily demarcate a central domain of the developing musculature at the epaxial-hypaxial boundary. Moreover, they are the only genes known with this particular expression pattern. The aim of this study was to investigate whether Engrailed genes control epaxial-hypaxial muscle development and innervation. Investigating chick, mouse and zebrafish as major gnathostome model organisms, we found that the Engrailed expression domain was associated with the establishment of the epaxial-hypaxial boundary of muscle in all three species. Moreover, the outgrowing epaxial and hypaxial nerves orientated themselves with respect to this Engrailed domain. In the chicken, loss and gain of Engrailed function changed epaxial-hypaxial somite patterning. Importantly, in all animals studied, loss and gain of Engrailed function severely disrupted the pathfinding of the spinal motor axons, suggesting that Engrailed plays an evolutionarily conserved role in the separate innervation of vertebrate epaxial-hypaxial muscle.


Assuntos
Galinhas/metabolismo , Proteínas de Homeodomínio/metabolismo , Movimento , Músculo Esquelético/inervação , Músculo Esquelético/metabolismo , Fatores de Transcrição/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Animais , Animais Recém-Nascidos , Axônios/metabolismo , Biomarcadores/metabolismo , Padronização Corporal/genética , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Desenvolvimento Muscular/genética , Mioblastos/citologia , Mioblastos/metabolismo , Fenótipo , Somitos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...