Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 21(9)2016 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-27589705

RESUMO

Matrix metalloproteinases (MMPs) are endopeptidases responsible for the hydrolysis of various components of extracellular matrix. MMPs, namely gelatinases MMP-2 and MMP-9, contribute to the progression of chronic and degenerative diseases. Since gelatinases' activity and expression are regulated by oxidative stress, we sought to evaluate whether supplementation with polyphenol-rich red grape skin extracts modulated the matrix-degrading capacity in cell models of vascular inflammation. Human endothelial and monocytic cells were incubated with increasing concentrations (0.5-25 µg/mL) of Negroamaro and Primitivo red grape skin polyphenolic extracts (NSPE and PSPE, respectively) or their specific components (0.5-25 µmol/L), before stimulation with inflammatory challenge. NSPE and PSPE inhibited, in a concentration-dependent manner, endothelial invasion as well as the MMP-9 and MMP-2 release in stimulated endothelial cells, and MMP-9 production in inflamed monocytes, without affecting tissue inhibitor of metalloproteinases (TIMP)-1 and TIMP-2. The matrix degrading inhibitory capacity was the same for both NSPE and PSPE, despite their different polyphenolic profiles. Among the main polyphenols of grape skin extracts, trans-resveratrol, trans-piceid, kaempferol and quercetin exhibited the most significant inhibitory effects on matrix-degrading enzyme activities. Our findings appreciate the grape skins as rich source of polyphenols able to prevent the dysregulation of vascular remodelling affecting degenerative and inflammatory diseases.


Assuntos
Frutas/química , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/enzimologia , Metaloproteinase 2 da Matriz/biossíntese , Metaloproteinase 9 da Matriz/biossíntese , Modelos Biológicos , Polifenóis , Vasculite/tratamento farmacológico , Vitis/química , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Polifenóis/química , Polifenóis/isolamento & purificação , Polifenóis/farmacologia , Remodelação Vascular/efeitos dos fármacos , Vasculite/enzimologia , Vasculite/patologia
2.
Front Physiol ; 7: 177, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27303304

RESUMO

Colon is exposed to a number of prooxidant conditions and several colon diseases are associated with increased levels of reactive species. Polyphenols are the most abundant antioxidants in the diet, but to date no information is available about their absorption and potential intracellular antioxidant activity on colon epithelial cells. The work was addressed to study the intracellular antioxidant activity of red grape polyphenolic extracts on rat colon epithelium experimentally exposed to prooxidant conditions. The experimental model chosen was represented by freshly isolated colon explants, which closely resemble the functional, and morphological characteristics of the epithelium in vivo. The study was carried out by in situ confocal microscopy observation on CM-H2DCFDA charged explants exposed to H2O2 (5, 10, and 15 min). The qualitative and quantitative polyphenolic composition of the extracts as well as their in vitro oxygen radical absorbing capacity (ORAC) was determined. The incubation of the explants with the polyphenolic extracts for 1 h produced a significant decrease of the H2O2 induced fluorescence. This effect was more pronounced following 15 min H2O2 exposure with respect to 5 min and it was also more evident for extracts obtained from mature grapes, which showed an increased ORAC value and qualitative peculiarities in the polyphenolic composition. The results demonstrated the ability of red grape polyphenols to cross the plasma membrane and exert a direct intracellular antioxidant activity in surface colonocytes, inducing a protection against pro-oxidant conditions. The changes in the polyphenol composition due to ripening process was reflected in a more effective antioxidant protection.

3.
Eur J Nutr ; 55(2): 477-489, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25724173

RESUMO

PURPOSE: The aim of the study was to evaluate the vascular anti-inflammatory effects of polyphenolic extracts from two typical South Italy red wines, the specific contribution of individual polyphenols and the underlying mechanisms of action. METHODS: Human endothelial cells were incubated with increasing concentrations (1-50 µg/mL) of Primitivo and Negroamaro polyphenolic extracts (PWPE and NWPE, respectively) or pure polyphenols (1-25 µmol/L), including hydroxycinnamic acids (p-coumaric, caffeic and caftaric acids), flavonols (kaempferol, quercetin, myricetin) or stilbenes (trans-resveratrol, trans-piceid) before stimulation with lipopolysaccharide. Through multiple assays, we analyzed the endothelial-monocyte adhesion, the endothelial expression of adhesion molecules (ICAM-1, VCAM-1 and E-Selectin), monocyte chemoattractant protein-1 (MCP-1) and macrophage colony-stimulating factor (M-CSF), as well as ROS intracellular levels and the activation of NF-κB and AP-1. RESULTS: Both PWPE and NWPE, already at 1 µg/mL, inhibited monocyte adhesion to stimulated endothelial cells, a key event in triggering vascular inflammation. They down-regulated the expression of adhesion molecules, ICAM-1, VCAM-1, E-Selectin, as well as MCP-1 and M-CSF, at mRNA and protein levels. All polyphenols reduced intracellular ROS, and everything, except caftaric acid, inhibited the endothelial expression of adhesion molecules and MCP-1, although with different potency. Flavonols and resveratrol significantly reduced also the endothelial expression and release of M-CSF. The decrease in endothelial inflammatory gene expression was related to the inhibition of NF-κB and AP-1 activation but not to intracellular oxidative stress. CONCLUSIONS: This study showed multiple anti-inflammatory and anti-atherosclerotic properties of red wine polyphenolic extracts and indentified specific bioactive polyphenols which could counteract inflammatory diseases including atherosclerosis.


Assuntos
Anti-Inflamatórios/farmacologia , Ácidos Cumáricos/farmacologia , Flavonóis/farmacologia , Polifenóis/farmacologia , Estilbenos/farmacologia , Vinho/análise , Anti-Inflamatórios/análise , Aterosclerose/tratamento farmacológico , Adesão Celular/efeitos dos fármacos , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Ácidos Cumáricos/análise , Selectina E/genética , Selectina E/metabolismo , Células Endoteliais/efeitos dos fármacos , Flavonóis/análise , Humanos , Inflamação/tratamento farmacológico , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Itália , NF-kappa B/genética , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Polifenóis/análise , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estilbenos/análise , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo
4.
Springerplus ; 4: 49, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25674504

RESUMO

The plant phenol trans-resveratrol, which is mainly found in grape, displays a wide range of biological effects. A cell suspension culture was developed from calli of grape leaves of Vitis vinifera cv. Negramaro in order to study the bioproduction of resveratrol. The effects of a number of secondary plant metabolism elicitors, namely chitosan, methyl jasmonate, jasmonic acid, coronatine, and 12-oxo-phytodienoic acid, were tested on this cell suspension culture. The identification and quantification of stilbenes was achieved with high performance liquid chromatography, with both spectrophotometric and mass spectrometric detection. Of the tested elicitors, methyl jasmonate was the most effective in inducing the biosynthesis of approximately 4 mg g(-1) dry weight (about 60 mg L(-1)) of resveratrol. Conversely, 12-oxo-phytodienoic acid, jasmonic acid, and coronatine were able to trigger the synthesis of approximately 20 mg g(-1) dry weight (200-210 mg L(-1)) of viniferins. Taken together, our results show for the first time different modulatory effects of closely-related jasmonates on stilbene biosynthesis.

5.
Plant Foods Hum Nutr ; 67(3): 191-9, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22777386

RESUMO

The plant polyphenol trans-resveratrol (3, 5, 4'-trihydroxystilbene) mainly found in grape, peanut and other few plants, displays a wide range of biological effects. Numerous in vitro studies have described various biological effects of resveratrol. In order to provide more information regarding absorption, metabolism, and bioavailability of resveratrol, various research approaches have been performed, including in vitro, ex vivo, and in vivo models. In recent years, the induction of resveratrol synthesis in plants which normally do not accumulate such polyphenol, has been successfully achieved by molecular engineering. In this context, the ectopic production of resveratrol has been reported to have positive effects both on plant resistance to biotic stress and the enhancement of the nutritional value of several widely consumed fruits and vegetables. The metabolic engineering of plants offers the opportunity to change the content of specific phytonutrients in plant - derived foods. This review focuses on the latest findings regarding on resveratrol bioproduction and its effects on the prevention of the major pathological conditions in man.


Assuntos
Dieta , Alimento Funcional , Engenharia Metabólica/métodos , Plantas Comestíveis/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Estilbenos/metabolismo , Adaptação Fisiológica , Frutas , Humanos , Valor Nutritivo , Plantas Comestíveis/genética , Resveratrol , Verduras
6.
Plant Physiol Biochem ; 49(10): 1092-9, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21843947

RESUMO

A novel strategy to induce parthenocarpy in tomato fruits by the induction of resveratrol biosynthesis in flower tissues was exploited. Two transgenic tomato lines were considered: a higher resveratrol-producing (35SS) line, constitutively expressing a grape stilbene synthase cDNA, and a lower resveratrol-producing (LoxS) line, expressing stilbene synthase under a fruit-specific promoter. The expression of the stilbene synthase gene affected flavonoid metabolism in a different manner in the transgenic lines, and in one of these, the 35SS line, resulted in complete male sterility. Resveratrol was synthesised either in 35SS or LoxS tomato flowers, at an even higher extent (about 8-10 times) in the former line. We further investigated whether stilbene synthase expression may have resulted in impaired naringenin accumulation during flower development. In the 35SS flowers, naringenin was significantly impaired by about 50%, probably due to metabolic competition. Conversely, the amount of glycosylated flavonols increased in transgenic flowers, thereby excluding the diminished production of flavonols as a reason for parthenocarpy in tomato. We further investigated whether resveratrol synthesis may have resulted changes to pollen structure. Microscopic observations revealed the presence of few and abnormal flake-like pollen grains in 35SS flowers with no germination capability. Finally, the analysis of coumaric and ferulic acids, the precursors of lignin and sporopollenin biosynthesis, revealed significant depletion of these compounds, therefore suggesting an impairment in structural compounds as a reason for pollen ablation. These overall outcomes, to the best of our knowledge, reveal for the first time the major role displayed by resveratrol synthesis on parthenocarpy in tomato fruits.


Assuntos
Aciltransferases/metabolismo , Partenogênese , Pólen/crescimento & desenvolvimento , Solanum lycopersicum/genética , Vitis/enzimologia , Aciltransferases/genética , Agrobacterium/genética , Agrobacterium/metabolismo , Vias Biossintéticas , Flavanonas/análise , Flavanonas/metabolismo , Genes de Plantas , Germinação , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Microscopia Confocal , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Pólen/genética , Pólen/metabolismo , Polinização , RNA de Plantas/genética , RNA de Plantas/isolamento & purificação , Resveratrol , Estilbenos/análise , Estilbenos/metabolismo , Transformação Genética , Vitis/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA