Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(8): 11766-11780, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38224439

RESUMO

Plastic is an essential component of agriculture globally, becoming a concerning form of pollution. Biodegradable alternatives are gaining attention as a potential replacement for commonly used, non-degradable plastics, but there is little known about the impacts of biodegradable plastics as they age and potential leachates are released. In this study, different types (conventional: polyethylene and polypropylene and biodegradable: polyhydroxybutyrate and polylactic acid) of micro- and meso-films were added to soil at 0.1% (w/w) prior to being planted with Lolium perenne (perennial ryegrass) to evaluate the plant and soil biophysical responses in a pot experiment. Root and shoot biomass and chlorophyll content were reduced when soil was exposed to plastics, whether conventional or biodegradable, pristine, aged or when just their leachate was present. The pH and organic matter content of soil exposed to these plastics and their leachates was significantly reduced compared to control samples; furthermore, there was an increase in CO2 respiration rate from soil. In general, meso (> 5 mm) and micro (< 5 mm) plastic films did not differ in the impact on plants or soil. This study provides evidence that conventional and biodegradable plastics have both physical and chemical impacts on essential soil characteristics and the growth of L. perenne, potentially leading to wider effects on soil carbon cycling.


Assuntos
Plásticos Biodegradáveis , Lolium , Solo/química , Carbono , Agricultura , Biomassa , Plantas , Plásticos
3.
Front Psychol ; 9: 1601, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30233456

RESUMO

A speed-accuracy trade-off (SAT) in behavioural decisions is known to occur in a wide range of vertebrate and invertebrate taxa. Accurate decisions often take longer for a given condition, while fast decisions can be inaccurate in some tasks. Speed-accuracy tactics are known to vary consistently among individuals, and show a degree of flexibility during colour discrimination tasks in bees. Such individual flexibility in speed-accuracy tactics is likely to be advantageous for animals exposed to fluctuating environments, such as changes in predation threat. We therefore test whether individual speed-accuracy tactics are fixed or flexible under different levels of predation threat in a model invertebrate, the bumblebee Bombus terrestris. The flexibility of speed-accuracy tactics in a foraging context was tested in the laboratory using a "meadow" of artificial flowers harbouring "robotic" crab spider predators. We found that while the ranking of bees along the speed and accuracy continuums was consistent across two levels of predation threat, there was some flexibility in the tactics used by individual bees - most bees became less accurate at colour discrimination when exposed to predation threat when flower types were rewarding. The relationship between decision speed and accuracy was influenced by predator detectability and the risk associated with making incorrect choices during the colour discrimination task. Predator crypsis resulted in a breakdown in the relationship between speed and accuracy, especially when making an incorrect floral choice incurred a distasteful quinine punishment. No single speed-accuracy tactic was found to be optimal in terms of foraging efficiency under either predation threat situation. However, bees that made faster decisions achieved higher nectar collection rates in predator free situations, while accurate bees achieved higher foraging rates under predation threat. Our findings show that while individual bees remain relatively consistent in terms of whether they place greater emphasis on speed or accuracy under predation threat, they can respond flexibly to the additional time costs of detecting predators.

4.
PeerJ ; 6: e5618, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30245938

RESUMO

Understanding how ecological communities are structured is a major goal in ecology. Ecological networks representing interaction patterns among species have become a powerful tool to capture the mechanisms underlying plant-animal assemblages. However, these networks largely do not account for inter-individual variability and thus may be limiting our development of a clear mechanistic understanding of community structure. In this study, we develop a new individual-trait based approach to examine the importance of individual plant and pollinator functional size traits (pollinator thorax width and plant nectar holder depth) in mutualistic networks. We performed hierarchical cluster analyses to group interacting individuals into classes, according to their similarity in functional size. We then compared the structure of bee-flower networks where nodes represented either species identity or trait sets. The individual trait-based network was almost twice as nested as its species-based equivalent and it had a more symmetric linkage pattern resulting from of a high degree of size-matching. In conclusion, we show that by constructing individual trait-based networks we can reveal important patterns otherwise difficult to observe in species-based networks and thus improve our understanding of community structure. We therefore recommend using both trait-based and species-based approaches together to develop a clearer understanding of the properties of ecological networks.

5.
Sci Rep ; 6: 30401, 2016 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-27459948

RESUMO

Simulated annealing is a powerful stochastic search algorithm for locating a global maximum that is hidden among many poorer local maxima in a search space. It is frequently implemented in computers working on complex optimization problems but until now has not been directly observed in nature as a searching strategy adopted by foraging animals. We analysed high-speed video recordings of the three-dimensional searching flights of bumblebees (Bombus terrestris) made in the presence of large or small artificial flowers within a 0.5 m(3) enclosed arena. Analyses of the three-dimensional flight patterns in both conditions reveal signatures of simulated annealing searches. After leaving a flower, bees tend to scan back-and forth past that flower before making prospecting flights (loops), whose length increases over time. The search pattern becomes gradually more expansive and culminates when another rewarding flower is found. Bees then scan back and forth in the vicinity of the newly discovered flower and the process repeats. This looping search pattern, in which flight step lengths are typically power-law distributed, provides a relatively simple yet highly efficient strategy for pollinators such as bees to find best quality resources in complex environments made of multiple ephemeral feeding sites with nutritionally variable rewards.


Assuntos
Abelhas/fisiologia , Comportamento Animal , Voo Animal , Adaptação Fisiológica , Animais , Polinização
6.
Phys Rev Lett ; 108(9): 098103, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22463671

RESUMO

We analyze 3D flight paths of bumblebees searching for nectar in a laboratory experiment with and without predation risk from artificial spiders. For the flight velocities we find mixed probability distributions reflecting the access to the food sources while the threat posed by the spiders shows up only in the velocity correlations. The bumblebees thus adjust their flight patterns spatially to the environment and temporally to predation risk. Key information on response to environmental changes is contained in temporal correlation functions, as we explain by a simple emergent model.


Assuntos
Abelhas/fisiologia , Comportamento Alimentar/fisiologia , Comportamento Predatório/fisiologia , Animais , Voo Animal/fisiologia , Distribuição Normal , Fatores de Risco , Fatores de Tempo
7.
PLoS One ; 5(3): e9559, 2010 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-20221445

RESUMO

BACKGROUND: Foraging bumblebees are normally associated with spring and summer in northern Europe. However, there have been sightings of the bumblebee Bombus terrestris during the warmer winters in recent years in southern England. But what floral resources are they relying upon during winter and how much winter forage can they collect? METHODOLOGY/PRINCIPAL FINDINGS: To test if urban areas in the UK provide a rich foraging niche for bees we set up colonies of B. terrestris in the field during two late winter periods (2005/6 & 2006/7) in London, UK, and measured their foraging performance. Fully automatic radio-frequency identification (RFID) technology was used in 2006/7 to enable us to record the complete foraging activity of individually tagged bees. The number of bumblebees present during winter (October 2007 to March 2008) and the main plants they visited were also recorded during transect walks. Queens and workers were observed throughout the winter, suggesting a second generation of bee colonies active during the winter months. Mass flowering shrubs such as Mahonia spp. were identified as important food resources. The foraging experiments showed that bees active during the winter can attain nectar and pollen foraging rates that match, and even surpass, those recorded during summer. CONCLUSIONS/SIGNIFICANCE: B. terrestris in the UK are now able to utilise a rich winter foraging resource in urban parks and gardens that might at present still be under-exploited, opening up the possibility of further changes in pollinator phenology.


Assuntos
Abelhas/fisiologia , Comportamento Alimentar , Comportamento de Nidação/fisiologia , Comportamento Espacial/fisiologia , Animais , Comportamento Animal , Cidades , Polinização , Densidade Demográfica , Especificidade da Espécie , Reino Unido
8.
Proc Biol Sci ; 276(1664): 2031-6, 2009 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-19324797

RESUMO

Predators of pollinators can influence pollination services and plant fitness via both consumptive (reducing pollinator density) and non-consumptive (altering pollinator behaviour) effects. However, a better knowledge of the mechanisms underlying behaviourally mediated indirect effects of predators is necessary to properly understand their role in community dynamics. We used the tripartite relationship between bumblebees, predatory crab spiders and flowers to ask whether behaviourally mediated effects are localized to flowers harbouring predators, or whether bees extend their avoidance to entire plant species. In a tightly controlled laboratory environment, bumblebees (Bombus terrestris) were exposed to a random mixture of equally rewarding yellow and white artificial flowers, but foraging on yellow flowers was very risky: bees had a 25 per cent chance of receiving a simulated predation attempt by 'robotic' crab spiders. As bees learnt to avoid 'dangerous' flowers, their foraging preferences changed and they began to visit fewer yellow flowers than expected by chance. Bees avoided spider-free yellow flowers as well as dangerous yellow flowers when spiders were more difficult to detect (the colour of yellow spiders was indistinguishable from that of yellow flowers). Therefore, this interaction between bee learning and predator crypsis could lead flower species harbouring cryptic predators to suffer from reduced reproductive success.


Assuntos
Abelhas/fisiologia , Polinização , Comportamento Predatório , Animais , Aprendizagem da Esquiva , Flores/anatomia & histologia , Aranhas/anatomia & histologia , Aranhas/fisiologia
9.
J Anim Ecol ; 78(1): 253-69, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19120606

RESUMO

1. A fundamental goal of ecological network research is to understand how the complexity observed in nature can persist and how this affects ecosystem functioning. This is essential for us to be able to predict, and eventually mitigate, the consequences of increasing environmental perturbations such as habitat loss, climate change, and invasions of exotic species. 2. Ecological networks can be subdivided into three broad types: 'traditional' food webs, mutualistic networks and host-parasitoid networks. There is a recent trend towards cross-comparisons among network types and also to take a more mechanistic, as opposed to phenomenological, perspective. For example, analysis of network configurations, such as compartments, allows us to explore the role of co-evolution in structuring mutualistic networks and host-parasitoid networks, and of body size in food webs. 3. Research into ecological networks has recently undergone a renaissance, leading to the production of a new catalogue of evermore complete, taxonomically resolved, and quantitative data. Novel topological patterns have been unearthed and it is increasingly evident that it is the distribution of interaction strengths and the configuration of complexity, rather than just its magnitude, that governs network stability and structure. 4. Another significant advance is the growing recognition of the importance of individual traits and behaviour: interactions, after all, occur between individuals. The new generation of high-quality networks is now enabling us to move away from describing networks based on species-averaged data and to start exploring patterns based on individuals. Such refinements will enable us to address more general ecological questions relating to foraging theory and the recent metabolic theory of ecology. 5. We conclude by suggesting a number of 'dead ends' and 'fruitful avenues' for future research into ecological networks.


Assuntos
Ecologia , Cadeia Alimentar , Animais , Comportamento Animal/fisiologia , Evolução Biológica , Ecologia/métodos , Ecologia/tendências
10.
Curr Biol ; 18(19): 1520-4, 2008 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-18771920

RESUMO

Learning plays a crucial role in predator avoidance [1-3], but little is known about how the type of experience with predators molds future prey behavior. Specifically, is predator-avoidance learning and memory retention disrupted by cryptic coloration of predators, such as crab spiders [4, 5]? How does experience with different predators affect foraging decisions? We evaluated these questions by exposing foraging bumblebees to controlled predation risk from predators (robotic crab spiders) that were either cryptic or highly contrasting, as assessed by a quantitative model of bee color perception [6]. Our results from 3D tracking software reveal a speed-accuracy tradeoff [7]: Bees slow their inspection flights after learning that there is a risk from cryptic spiders. The adjustment of inspection effort results in accurate predator detection, leveling out predation risk at the expense of foraging time. Overnight-retention tests reveal no decline in performance, but bees that had experienced cryptic predators are more prone to "false alarms" (rejection of foraging opportunities on safe flowers) than those that had experienced conspicuous predators. Therefore, bees in the cryptic-spider treatment made a functional decision to trade off reduced foraging efficiency via increased inspection times and false-alarm rates against higher potential fitness loss from being injured or eaten.


Assuntos
Aprendizagem da Esquiva , Abelhas , Comportamento Animal , Ecossistema , Aranhas , Adaptação Biológica , Animais , Fatores de Tempo
11.
J Econ Entomol ; 98(3): 656-63, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16022289

RESUMO

The mineral, total amino acid, and sterol compositions of pollen collected by Apis mellifera L. were compared with the pollen of a plant consumed by Bombus terrestris (L.): Arbutus unedo L. This plant provides the predominant food resource for the main autumn generation of B. terrestris in southern France. Honey bees also forage on this plant, although only for nectar. The mineral composition of 30 pollen samples collected by honey bees is close to the presently known requirements of A. mellifera, except for Cu and Mn, which are substantially lower. The total amino acid mean composition of a set of 54 pollen samples fits the basic requirements of honey bees except for valine, isoleucine, and methionine, which are present in lower concentrations in all the samples. For pollen of A. unedo, the amino acid balance is not very different from that of the survey. The main sterolic component in pollen of A. unedo, beta-sitosterol, is known to have antifeedant effects on A. mellifera. Honey bees cannot dealkylate C29 sterols like beta-sitosterol or delta5-avenasterol to obtain C27 cholesterol and ecdysteroids. Because these phytosterols as well as cholesterol are nearly absent from pollen of A. unedo, the metabolic capabilities of Apis seem unadapted to this plant. On the contrary, pollen of A. unedo is freely consumed by B. terrestris, which develops huge autumn populations solely on this food. These data indicate that the sterolic metabolisms of B. terrestris and A. mellifera differ, allowing separation in foraging activity.


Assuntos
Abelhas/fisiologia , Dieta , Ericaceae/química , Pólen/química , Aminoácidos/análise , Animais , Minerais/análise , Esteróis/análise
12.
Oecologia ; 144(3): 508-16, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15891827

RESUMO

Worldwide trade in non-native bumblebees remains largely unrestricted despite well-documented cases where introductions of non-native bees have gone dramatically wrong. Within Europe, indiscriminate importation of non-native populations of bumblebees (Bombus terrestris) for the pollination of glasshouse crops continues on a massive scale. However, no risk assessment has been conducted for these introductions, perhaps because B. terrestris is considered a native species, so shipping populations from one region to another has been implicitly assumed to present no risk. This view is clearly unjustified because Bombus terrestris populations differ significantly in their genetic makeup as demonstrated by strong differences in coat colour and behavioural traits. Therefore, for the first time we compare an important competitive trait, namely foraging performance, between commercially available B. terrestris populations in contrasting environments. We test whether commercially reared populations differ in their nectar foraging performance and whether this is influenced by both their source environment and the one they are introduced into. We do this by means of a reciprocal transplant experiment. Strong, consistent inter-population differences in performance occurred irrespective of test location: Canary Island bees (B. t. canariensis) were superior to Sardinian bees (B. t. sassaricus), which were generally superior to mainland European bees (B. t. terrestris). These inter-population differences in performance were largely explained by inter-population variation in forager size, with larger bees being superior foragers. However, even when body size was accounted for, "native" bees were not superior to transplanted non-native bees in all but one case. We conclude that non-native populations, especially those with large foragers, can be highly competitive foragers. This could lead to their establishment and displacement of native bees. Therefore, we recommend that unregulated movements of non-native B. terrestris populations within Europe should not be carried out without a full risk assessment.


Assuntos
Abelhas/fisiologia , Meio Ambiente , Comportamento Alimentar/fisiologia , Pólen , Animais , Tamanho Corporal , Conservação dos Recursos Naturais , Europa (Continente) , Modelos Lineares , Observação , Medição de Risco , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...