Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(10): e0292092, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37788246

RESUMO

Intracranial hematoma (ICH) volume is considered a predictor of clinical outcome and mortality rate in ICH patients with traumatic brain injury (TBI). The ABC/2 method for ICH volume is the standard method used to date, however, its level of accuracy has been questioned in some studies. This study compared the performance of the ABC/2 method with planimetry and truncated pyramidal methods to highlight the potential of the planimetry method applied with automatic segmentation for evaluation of epidural hematoma (EDH) and intraparenchymal hematoma (IPH) volume. Six different phantoms were designed to evaluate the accuracy of volume estimation methods. 221 hematoma regions extracted from CT scans of 125 patients with head injury were also used to analyze the efficiency. The roundness index was utilized for the quantification of the ellipsoid-like shape. Regions of EDH and IPH on the CT scans were annotated by radiologists. The estimation errors for each method were statistically analyzed and compared. In addition, the relationship between the errors and roundness index was examined. The planimetry method showed the lowest relative error on phantom data. In the case of the CT scan data, the truncated pyramidal method resulted in the underestimation of the volumes of EDH and IPH. Meanwhile, the ABC/2, through principal component analysis (PCA) in the two-dimensional and PCA in the three-dimensional methods, resulted in a significant overestimation. In addition, both these approaches produced relative errors that showed a correlation with the roundness indexes for IPH. In comparison to other methods, the planimetry method had the lowest level of error with regards to calculation of the volume and it was also independent of the hematoma shape. The planimetry method, therefore, has the potential to serve as a useful tool for the assessment of ICH volume in TBI patients by using a deep learning system.


Assuntos
Lesões Encefálicas Traumáticas , Hemorragias Intracranianas , Humanos , Hemorragias Intracranianas/diagnóstico por imagem , Hemorragia Cerebral/diagnóstico por imagem , Hematoma , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos
2.
Sci Rep ; 13(1): 9975, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37340038

RESUMO

Intracranial hemorrhage (ICH) from traumatic brain injury (TBI) requires prompt radiological investigation and recognition by physicians. Computed tomography (CT) scanning is the investigation of choice for TBI and has become increasingly utilized under the shortage of trained radiology personnel. It is anticipated that deep learning models will be a promising solution for the generation of timely and accurate radiology reports. Our study examines the diagnostic performance of a deep learning model and compares the performance of that with detection, localization and classification of traumatic ICHs involving radiology, emergency medicine, and neurosurgery residents. Our results demonstrate that the high level of accuracy achieved by the deep learning model, (0.89), outperforms the residents with regard to sensitivity (0.82) but still lacks behind in specificity (0.90). Overall, our study suggests that the deep learning model may serve as a potential screening tool aiding the interpretation of head CT scans among traumatic brain injury patients.


Assuntos
Lesões Encefálicas Traumáticas , Aprendizado Profundo , Neurocirurgia , Humanos , Hemorragias Intracranianas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos
3.
Nat Sci Sleep ; 14: 1641-1649, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36132745

RESUMO

Purpose: Driving while drowsy is a major cause of traffic accidents globally. Recent technologies for detection and alarm within automobiles for this condition are limited by their reliability, practicality, cost, and lack of clinical validation. In this study, we developed an early drowsiness detection algorithm and device based on the "gold standard brain biophysiological signal" and facial expression digital data. Methods: The data were obtained from 10 participants. Artificial neural networks (ANN) were adopted as the model. Composite features of facial descriptors (ie, eye aspect ratio (EAR), mouth aspect ratio (MAR), face length (FL), and face width balance (FWB)) extracted from two-second video frames were investigated. Results: The ANN combined with the EAR and MAR features had the most sensitivity (70.12%) while the ANN combined with the EAR, MAR, and FL features had the most accuracy and specificity (60.76% and 58.71%, respectively). In addition, by applying the discrete Fourier transform (DFT) to the composite features, the ANN combined with the EAR and MAR features again had the highest sensitivity (72.25%), while the ANN combined with the EAR, MAR, and FL features had the highest accuracy and specificity (60.40% and 54.10%, respectively). Conclusion: The ANN with DFT combined with the EAR, MAR, and FL offered the best performance. Our direct driver sleepiness detection system developed from the integration of biophysiological information and internal validation provides a valuable algorithm, specifically toward alertness level.

4.
Comput Biol Med ; 146: 105530, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35460962

RESUMO

The most common cause of long-term disability and death in young adults is a traumatic brain injury. The decision for surgical intervention for craniotomy is dependent on the injury type and the patient's neurologic exam. The potential subtypes of intracranial hemorrhage that may necessitate surgical intervention include subdural hemorrhage, epidural hemorrhage, and intraparenchymal hemorrhage. We proposed a novel automatic method for segmenting the hemorrhage subtypes on a CT scan by integrated CT scan with bone window as input of a deep learning model. Brain CT scans were collected from adult patients and annotated regions of subdural hemorrhage, epidural hemorrhage, and intraparenchymal hemorrhage by neuroradiologists. Their raw DICOM images were preprocessed by two different window settings i.e., subdural and bone windows. The collected CT scans were divided into two datasets namely training and test datasets. A deep-learning model was modified to segment regions of each hemorrhage subtype. The model is a three-dimensional convolutional neural network including four parallel pathways that process the input at different resolutions. It was trained by a training dataset. After the segmentation result was produced by the deep-learning model, it was then improved in the post-processing step. The size of the segmented lesion was considered, and a region-growing algorithm was applied. We evaluated the performance of the proposed method on the test dataset. The method reached the median Dice similarity coefficients higher than 0.37 for each hemorrhage subtype. The proposed method demonstrates higher Dice similarity coefficients and improved segmentation performance compared to previously published literature.


Assuntos
Lesões Encefálicas Traumáticas , Aprendizado Profundo , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Hematoma Subdural , Humanos , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Tomografia Computadorizada por Raios X/métodos , Adulto Jovem
5.
Med Biol Eng Comput ; 58(10): 2497-2515, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32794015

RESUMO

Liver and bile duct cancers are leading causes of worldwide cancer death. The most common ones are hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). Influencing factors and prognosis of HCC and ICC are different. Precise classification of these two liver cancers is essential for treatment and prevention plans. The aim of this study is to develop a machine-based method that differentiates between the two types of liver cancers from multi-phase abdominal computerized tomography (CT) scans. The proposed method consists of two major steps. In the first step, the liver is segmented from the original images using a convolutional neural network model, together with task-specific pre-processing and post-processing techniques. In the second step, by looking at the intensity histograms of the segmented images, we extract features from regions that are discriminating between HCC and ICC, and use them as an input for classification using support vector machine model. By testing on a dataset of labeled multi-phase CT scans provided by Maharaj Nakorn Chiang Mai Hospital, Thailand, we have obtained 88% in classification accuracy. Our proposed method has a great potential in helping radiologists diagnosing liver cancer.


Assuntos
Neoplasias dos Ductos Biliares/diagnóstico por imagem , Carcinoma Hepatocelular/diagnóstico por imagem , Colangiocarcinoma/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Neoplasias Hepáticas/diagnóstico por imagem , Bases de Dados Factuais , Diagnóstico por Computador , Humanos , Redes Neurais de Computação , Máquina de Vetores de Suporte , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA