Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Genet ; 46(8): 511-23, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19372089

RESUMO

BACKGROUND: Recurrent 15q13.3 microdeletions were recently identified with identical proximal (BP4) and distal (BP5) breakpoints and associated with mild to moderate mental retardation and epilepsy. METHODS: To assess further the clinical implications of this novel 15q13.3 microdeletion syndrome, 18 new probands with a deletion were molecularly and clinically characterised. In addition, we evaluated the characteristics of a family with a more proximal deletion between BP3 and BP4. Finally, four patients with a duplication in the BP3-BP4-BP5 region were included in this study to ascertain the clinical significance of duplications in this region. RESULTS: The 15q13.3 microdeletion in our series was associated with a highly variable intra- and inter-familial phenotype. At least 11 of the 18 deletions identified were inherited. Moreover, 7 of 10 siblings from four different families also had this deletion: one had a mild developmental delay, four had only learning problems during childhood, but functioned well in daily life as adults, whereas the other two had no learning problems at all. In contrast to previous findings, seizures were not a common feature in our series (only 2 of 17 living probands). Three patients with deletions had cardiac defects and deletion of the KLF13 gene, located in the critical region, may contribute to these abnormalities. The limited data from the single family with the more proximal BP3-BP4 deletion suggest this deletion may have little clinical significance. Patients with duplications of the BP3-BP4-BP5 region did not share a recognisable phenotype, but psychiatric disease was noted in 2 of 4 patients. CONCLUSIONS: Overall, our findings broaden the phenotypic spectrum associated with 15q13.3 deletions and suggest that, in some individuals, deletion of 15q13.3 is not sufficient to cause disease. The existence of microdeletion syndromes, associated with an unpredictable and variable phenotypic outcome, will pose the clinician with diagnostic difficulties and challenge the commonly used paradigm in the diagnostic setting that aberrations inherited from a phenotypically normal parent are usually without clinical consequences.


Assuntos
Aberrações Cromossômicas , Deleção Cromossômica , Transtornos Cromossômicos/genética , Cromossomos Humanos Par 15/genética , Duplicação Gênica , Adolescente , Adulto , Criança , Pré-Escolar , Transtornos Cromossômicos/patologia , Feminino , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Linhagem , Gravidez , Síndrome
2.
Genome Res ; 11(10): 1686-98, 2001 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11591645

RESUMO

The analysis of differentially expressed genes is a powerful approach to elucidate the genetic mechanisms underlying the morphological and evolutionary diversity among serially homologous structures, both within the same organism (e.g., hand vs. foot) and between different species (e.g., hand vs. wing). In the developing embryo, limb-specific expression of Pitx1, Tbx4, and Tbx5 regulates the determination of limb identity. However, numerous lines of evidence, including the fact that these three genes encode transcription factors, indicate that additional genes are involved in the Pitx1-Tbx hierarchy. To examine the molecular distinctions coded for by these factors, and to identify novel genes involved in the determination of limb identity, we have used Serial Analysis of Gene Expression (SAGE) to generate comprehensive gene expression profiles from intact, developing mouse forelimbs and hindlimbs. To minimize the extraction of erroneous SAGE tags from low-quality sequence data, we used a new algorithm to extract tags from -analyzed sequence data and obtained 68,406 and 68,450 SAGE tags from forelimb and hindlimb SAGE libraries, respectively. We also developed an improved method for determining the identity of SAGE tags that increases the specificity of and provides additional information about the confidence of the tag-UniGene cluster match. The most differentially expressed gene between our SAGE libraries was Pitx1. The differential expression of Tbx4, Tbx5, and several limb-specific Hox genes was also detected; however, their abundances in the SAGE libraries were low. Because numerous other tags were differentially expressed at this low level, we performed a 'virtual' subtraction with 362,344 tags from six additional nonlimb SAGE libraries to further refine this set of candidate genes. This subtraction reduced the number of candidate genes by 74%, yet preserved the previously identified regulators of limb identity. This study presents the gene expression complexity of the developing limb and identifies candidate genes involved in the regulation of limb identity. We propose that our computational tools and the overall strategy used here are broadly applicable to other SAGE-based studies in a variety of organisms. [SAGE data are all available at GEO (http://www.ncbi.nlm.nih.gov/geo/) under accession nos. GSM55 and GSM56, which correspond to the forelimb and hindlimb raw SAGE data.]


Assuntos
Membro Anterior/crescimento & desenvolvimento , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Membro Posterior/crescimento & desenvolvimento , Animais , Membro Anterior/anormalidades , Biblioteca Gênica , Membro Posterior/anormalidades , Humanos , Deformidades Congênitas dos Membros/genética , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Família Multigênica/genética , Análise de Sequência de DNA , Sitios de Sequências Rotuladas , Síndrome
3.
Am J Hum Genet ; 69(2): 420-7, 2001 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11431706

RESUMO

Menkes disease and occipital horn syndrome (OHS) are allelic, X-linked recessive copper-deficiency disorders resulting from mutations in ATP7A, or MNK. Classic Menkes disease has a severe phenotype, with death in early childhood, whereas OHS has a milder phenotype, with, mainly, connective-tissue abnormalities. Data suggest that steady-state localization of ATP7A to the trans-Golgi network (TGN) is necessary for proper activity of lysyl oxidase, which is the predominant cuproenzyme whose activity is deficient in OHS and which is essential for maintenance of connective-tissue integrity. Recently, it was reported that ATP7A-transcript levels as low as 2%-5% of normal are sufficient to result in the milder phenotype, OHS, rather than the phenotype of Menkes disease. In contrast to previously reported cases of OHS, we describe a case of OHS in which, because of a frameshift mutation, no normal ATP7A is produced. Although abundant levels of mutant transcript are present, there are substantially reduced levels of the truncated protein, which lacks the key dileucine motif L1487L1488. It has been demonstrated that the dileucine motif L1487L1488 functions as an endocytic signal for ATP7A cycling between the TGN and the plasma membrane. The present report is the first to describe an ATP7A truncation that results in OHS rather than in Menkes disease. The data from the present report support the concepts that (1) OHS results from lower levels of functional ATP7A and (2) ATP7A does not require the dileucine motif to function in copper efflux.


Assuntos
Adenosina Trifosfatases/genética , Proteínas de Transporte/genética , Proteínas de Transporte de Cátions , Deficiências Nutricionais/genética , Síndrome de Ehlers-Danlos/genética , Éxons/genética , Mutação da Fase de Leitura/genética , Proteínas Recombinantes de Fusão , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Sequência de Bases , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Criança , Cobre/deficiência , Cobre/metabolismo , ATPases Transportadoras de Cobre , Análise Mutacional de DNA , Deficiências Nutricionais/enzimologia , Deficiências Nutricionais/metabolismo , Síndrome de Ehlers-Danlos/enzimologia , Síndrome de Ehlers-Danlos/metabolismo , Feminino , Fibroblastos , Humanos , Lactente , Masculino , Síndrome dos Cabelos Torcidos/enzimologia , Síndrome dos Cabelos Torcidos/genética , Dados de Sequência Molecular , Osso Occipital , Linhagem , Fenótipo , Regiões Promotoras Genéticas/genética , Sítios de Splice de RNA/genética , RNA Mensageiro/análise , RNA Mensageiro/genética
4.
Nucleic Acids Res ; 29(12): E60-0, 2001 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-11410683

RESUMO

Serial Analysis of Gene Expression (SAGE) is becoming a widely used gene expression profiling method for the study of development, cancer and other human diseases. Investigators using SAGE rely heavily on the quantitative aspect of this method for cataloging gene expression and comparing multiple SAGE libraries. We have developed additional computational and statistical tools to assess the quality and reproducibility of a SAGE library. Using these methods, a critical variable in the SAGE protocol was identified that has the potential to bias the Tag distribution relative to the GC content of the 10 bp SAGE Tag DNA sequence. We also detected this bias in a number of publicly available SAGE libraries. It is important to note that the GC content bias went undetected by quality control procedures in the current SAGE protocol and was only identified with the use of these statistical analyses on as few as 750 SAGE Tags. In addition to keeping any solution of free DiTags on ice, an analysis of the GC content should be performed before sequencing large numbers of SAGE Tags to be confident that SAGE libraries are free from experimental bias.


Assuntos
Composição de Bases , Perfilação da Expressão Gênica/métodos , Biblioteca Gênica , Animais , Viés , Encéfalo/metabolismo , Extremidades/embriologia , Masculino , Camundongos , Método de Monte Carlo , Controle de Qualidade , Reprodutibilidade dos Testes , Temperatura
5.
Bioinformatics ; 16(7): 650-1, 2000 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-11038335

RESUMO

SUMMARY: eSAGE is a comprehensive set of software tools for managing and analysing data generated with Serial Analysis of Gene Expression (SAGE).


Assuntos
Expressão Gênica , Software , Bases de Dados Factuais
6.
Am J Hum Genet ; 67(1): 197-202, 2000 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-10839976

RESUMO

Hand-foot-genital syndrome (HFGS) is a rare, dominantly inherited condition affecting the distal limbs and genitourinary tract. A nonsense mutation in the homeobox of HOXA13 has been identified in one affected family, making HFGS the second human syndrome shown to be caused by a HOX gene mutation. We have therefore examined HOXA13 in two new and four previously reported families with features of HFGS. In families 1, 2, and 3, nonsense mutations truncating the encoded protein N-terminal to or within the homeodomain produce typical limb and genitourinary abnormalities; in family 4, an expansion of an N-terminal polyalanine tract produces a similar phenotype; in family 5, a missense mutation, which alters an invariant domain, produces an exceptionally severe limb phenotype; and in family 6, in which limb abnormalities were atypical, no HOXA13 mutation could be detected. Mutations in HOXA13 can therefore cause more-severe limb abnormalities than previously suspected and may act by more than one mechanism.


Assuntos
Anormalidades Múltiplas/genética , Deformidades Congênitas do Pé/genética , Deformidades Congênitas da Mão/genética , Proteínas de Homeodomínio/genética , Mutação/genética , Anormalidades Urogenitais/genética , Anormalidades Múltiplas/diagnóstico por imagem , Criança , Códon sem Sentido/genética , Análise Mutacional de DNA , Feminino , Deformidades Congênitas do Pé/diagnóstico por imagem , Genes Homeobox/genética , Deformidades Congênitas da Mão/diagnóstico por imagem , Humanos , Lactente , Masculino , Dados de Sequência Molecular , Mutação de Sentido Incorreto/genética , Linhagem , Fenótipo , Radiografia , Deleção de Sequência/genética , Síndrome
7.
Am J Hum Genet ; 66(2): 436-44, 2000 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-10677303

RESUMO

Esophageal atresia (EA) is a common life-threatening congenital anomaly that occurs in 1/3,000 newborns. Little is known of the genetic factors that underlie EA. Oculodigitoesophageoduodenal (ODED) syndrome (also known as "Feingold syndrome") is a rare autosomal dominant disorder with digital abnormalities, microcephaly, short palpebral fissures, mild learning disability, and esophageal/duodenal atresia. We studied four pedigrees, including a three-generation Dutch family with 11 affected members. Linkage analysis was initially aimed at chromosomal regions harboring candidate genes for this disorder. Twelve different genomic regions covering 15 candidate genes (approximately 15% of the genome) were excluded from involvement in the ODED syndrome. A subsequent nondirective mapping approach revealed evidence for linkage between the syndrome and marker D2S390 (maximum LOD score 4.51 at recombination fraction 0). A submicroscopic deletion in a fourth family with ODED provided independent confirmation of this genetic localization and narrowed the critical region to 7.3 cM in the 2p23-p24 region. These results show that haploinsufficiency for a gene or genes in 2p23-p24 is associated with syndromic EA.


Assuntos
Anormalidades Múltiplas/genética , Mapeamento Cromossômico , Cromossomos Humanos Par 2/genética , Atresia Esofágica/genética , Animais , Sequência de Bases , Clonagem Molecular , Feminino , Genes Dominantes/genética , Proteínas de Homeodomínio/genética , Humanos , Hibridização in Situ Fluorescente , Escore Lod , Masculino , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/genética , Países Baixos , Linhagem , Fenótipo , Deleção de Sequência/genética , Síndrome
8.
Mamm Genome ; 11(2): 151-8, 2000 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-10656931

RESUMO

While the the role of the homeodomain in HOX function has been evaluated extensively, little attention has been given to the non-homeodomain portions of the HOX proteins. To investigate the evolution of the HOXA13 protein and to identify conserved residues in the N-terminal region of the protein with potential functional significance, N-terminal Hoxa13 coding sequences were PCR-amplified from fish, amphibian, reptile, chicken, and marsupial and eutherian mammal genomic DNA. Compared with fish HOXA13, the mammalian protein has increased in size by 35% primarily owing to the accumulation of alanine repeats and flanking segments rich in proline, glycine, or serine within the first 215 amino acids. Certain residues and amino acid motifs were strongly conserved, and several HOXA13 N-terminal domains were also shared in the paralogous HOXB 13 and HOXD13 genes; however, other conserved regions appear to be unique to HOXA13. Two domains highly conserved in HOXA13 orthologs are shared with Drosophila AbdB and other vertebrate AbdB-like proteins. Marsupial and eutherian mammalian HOXA13 proteins have three large homopolymeric alanine repeats of 14, 12, and 17-18 residues that are absent in reptiles, birds, and fish. Thus, the repeats arose after the divergence of reptiles from the lineage that would give rise to the mammals. In contrast, other short homopolymeric alanine repeats in mammalian HOXA13 have remained virtually the same length, suggesting that forces driving or limiting repeat expansion are context dependent. Consecutive stretches of identical third-base usage in alanine codons within the large repeats were found, supporting replication slippage as a mechanism for their generation. However, numerous species-specific base substitutions affecting third-base alanine repeat codon positions were observed, particularly in the largest repeat. Therefore, if the large alanine repeats were present prior to eutherian mammal development as is suggested by the opossum data, then a dynamic process of recurring replication slippage and point mutation within alanine repeat codons must be considered to reconcile these observations. This model might also explain why the alanine repeats are flanked by proline, serine, and glycine-rich sequences, and it reveals a biological mechanism that promotes increases in protein size and, potentially, acquisition of new functions.


Assuntos
Evolução Molecular , Proteínas de Homeodomínio/genética , Vertebrados/genética , Alanina/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Dados de Sequência Molecular , Sequências Repetitivas de Aminoácidos , Alinhamento de Sequência
9.
Dev Biol ; 217(2): 290-300, 2000 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-10625554

RESUMO

Hypodactyly (Hoxa13(Hd)) mice have a 50-bp deletion in the coding region of exon 1 of the Hoxa13 gene and have more severe limb defects than mice with an engineered deletion of the entire gene (Hoxa13(-/-)). Increased cell death is observed in the autopod of Hoxa13(Hd/Hd) but not Hoxa13(-/-) limb buds. In addition, compound heterozygotes for one Hd allele and a Hoxa13(-) allele have a more severe limb phenotype than mice homozygous for the engineered null allele, suggesting a dominant-negative effect of the Hd mutation. The Hoxa13(Hd) deletion does not interfere with steady-state mRNA levels; however, its consequences on translation are unknown. In this paper, we characterize the Hoxa13 transcription initiation site in limbs and determine the initiator methionine of HOXA13. We show that the Hoxa13(Hd) deletion results in a translational frame shift that leads to the loss of wild-type HOXA13 protein and the simultaneous production of a novel, stable protein in the limb buds of mutant mice. The mutant Hd protein (HOXA13(Hd)) consists of the first 25 amino acids of wild-type HOXA13 sequence, followed by 275 amino acids of arginine- and lysine-rich, novel sequence, and lacks the homeodomain. Like wild-type HOXA13, HOXA13(Hd) is localized to the nucleus in transfected COS-7 cells, perhaps mediated by the arginine- and lysine-rich peptide sequences created by the translational frame shift. To determine whether HOXA13(Hd) could alter limb morphogenesis, we misexpressed the mutant mRNA throughout the developing limb bud using a Prx-1 promoter-Hd gene construct in transgenic mice. Three of 15 transgenic founder animals displayed reduction or absence of proximal and distal limb structures. We propose that the expression of HOXA13(Hd) plays a role in the profound failure of digit formation in Hoxa13(Hd/Hd) mice and explains the morphologic differences between these two Hoxa13 alleles.


Assuntos
Extremidades/embriologia , Mutação da Fase de Leitura , Proteínas de Homeodomínio/genética , Botões de Extremidades/embriologia , Deformidades Congênitas dos Membros/genética , Animais , Sequência de Bases , Compartimento Celular , Núcleo Celular/química , Deleção de Genes , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Iniciação Traducional da Cadeia Peptídica , Deleção de Sequência , Transcrição Gênica
11.
Biol Reprod ; 61(6): 1402-8, 1999 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-10569982

RESUMO

Hypodactyly (Hoxa13(Hd)) mice have a 50-base-pair deletion in Hoxa13, and rare surviving homozygotes of both sexes are infertile. Heterozygous mutant mice are fertile; however, Hoxa13(Hd/+) females exhibit an anterior transformation of cervical tissue to a uterine stromal phenotype that is accentuated in the homozygote and occasionally includes uterine-specific glands in the transformed cervical region. The columnar-to-squamosal epithelial transition that characterizes mature cervical-vaginal tissue is positioned within uterine-like stroma rather than cervical tissue in these mutants, suggesting that this postnatal developmental transition occurs independent of the underlying stromal characteristics. Hoxa13(Hd/Hd) adult females produce apparently functional germ cells as determined by superovulation and ovarian histology, but they exhibit profound hypoplasia of the cervix and vaginal cavity. Using whole-mount in situ hybridization, we localized Hoxa13 expression to the cervical and vaginal tissues, consistent with the observed defects. In Hoxa13(Hd/Hd) males, the penian bone is severely hypoplastic and misshapen. The penian bone develops by a combination of endochondral and intramembranous ossification, but the defects observed in Hoxa13(Hd/Hd) males are limited to the region of endochondral bone formation. Our results indicate that infertility in Hypodactyly mutants is related to hypoplasia of the vaginal cavity and cervix in females and deficiency of the os penis in males.


Assuntos
Genitália/anormalidades , Proteínas de Homeodomínio/genética , Infertilidade/genética , Deformidades Congênitas dos Membros/genética , Animais , Colo do Útero/anormalidades , Colo do Útero/química , Feminino , Deleção de Genes , Expressão Gênica , Genitália/patologia , Hibridização In Situ , Masculino , Camundongos , Camundongos Mutantes , Pênis/anormalidades , Sistema Urinário/anormalidades , Útero/anormalidades , Vagina/anormalidades , Vagina/química
12.
Int J Dev Biol ; 43(4): 287-94, 1999 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-10470645

RESUMO

Hypodactyly (Hoxa13Hd) mice have a small deletion within the coding sequence of Hoxa13 and a limb phenotype that is more severe than that of mice with an engineered null allele of Hoxa13. We used whole-mount in situ hybridization, Nile blue sulfate staining and genetic crosses to determine the basis for the phenotypic differences between these two mutants. Expression of Hoxd13 was unaffected in Hoxa13-/- mice, but its domain was reduced at the anterior and posterior margins of the autopod in Hoxa13Hd/Hd limb buds. The maturation of Hoxd11 expression was delayed and expression of Hoxa11 failed to become restricted to the autopod/zeugopod junction in both Hoxa13Hd/Hd and Hoxa13-/- limb buds compared to wild-type mice. Fgf8 expression was normal in both Hoxa13Hd/Hd and Hoxa13-/- mice throughout limb development. A dramatic increase in cell death was observed in limb bud mesenchyme of Hoxa13Hd/Hd mice as early as E11.5 but not in mice homozygous for the null allele. Genetic background was excluded as the basisforthe phenotypic differences. Compound heterozygotes (Hoxa13-/Hd) displayed an intermediate phenotype relative to both homozygotes suggesting that Hoxa13Hd has an effect on the development of the autopod beyond that which may result from a loss of HOXA13 protein. These results showthat Hoxa13Hd has a negative effect on the survival of the mesenchyme in the autopod, unlike the Hoxa13 null mutation, that cannot be explained by a failure of the AER to express Fgfs. In addition, at least one target of HOXA13 may be Hoxa11.


Assuntos
Apoptose/genética , Genes Homeobox , Proteínas de Homeodomínio/genética , Animais , Sequência de Bases , Primers do DNA/genética , Extremidades/embriologia , Feminino , Expressão Gênica , Heterozigoto , Hibridização In Situ , Deformidades Congênitas dos Membros/embriologia , Deformidades Congênitas dos Membros/genética , Deformidades Congênitas dos Membros/patologia , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Fenótipo , Deleção de Sequência
13.
Clin Genet ; 53(5): 337-48, 1998 May.
Artigo em Inglês | MEDLINE | ID: mdl-9660051

RESUMO

We present a review of limb development integrating current molecular information and selected genetic disorders to illustrate the advances made in this field over the last few years. With this knowledge, clinical geneticists can now begin to consider molecular mechanisms and pathways when investigating patients with limb malformation syndromes.


Assuntos
Desenvolvimento Ósseo/genética , Extremidades/embriologia , Extremidades/crescimento & desenvolvimento , Animais , Deformidades Congênitas do Pé/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes/genética , Deformidades Congênitas da Mão/genética , Humanos , Camundongos , Camundongos Knockout/genética
14.
J Med Genet ; 35(3): 248-50, 1998 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-9541113

RESUMO

A four generation family (UoM1) was ascertained with Waardenburg syndrome type 1 (WS1). The proband exhibited both WS1 and septo-optic dysplasia. A G to C transversion was identified in PAX3 exon 7 in four subjects affected with WS1 in this family including the proband. This glutamine to histidine missense mutation at position 391 may also affect splicing. There are over 50 mutations characterised in PAX3 in WS1 patients; however, this is the first example of a WS1 mutation in exon 7 of PAX3.


Assuntos
Proteínas de Ligação a DNA/genética , Éxons/genética , Mutação , Disco Óptico/anormalidades , Septo Pelúcido/anormalidades , Fatores de Transcrição , Síndrome de Waardenburg/genética , Feminino , Genes Dominantes , Testes Genéticos , Humanos , Masculino , Fator de Transcrição PAX3 , Fatores de Transcrição Box Pareados , Linhagem , Reação em Cadeia da Polimerase , Síndrome de Waardenburg/classificação
15.
Am J Med Genet ; 75(1): 13-7, 1998 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-9450850

RESUMO

We report on a family with early-onset sensorineural hearing loss, abnormal retinal pigment epithelium granularity, accumulation of creamy-white lesions at the level of the retinal pigment epithelium particularly superior to the arcade, and selective discoloration (brown) of molars or canine deciduous teeth that follows an apparent autosomal recessive inheritance pattern. This appears to be a new syndrome that can be distinguished from the known otodental, oculo-acoustic and flecked retina syndromes by the occurrence of distinct dental and ocular abnormalities.


Assuntos
Perda Auditiva Neurossensorial/genética , Epitélio Pigmentado Ocular/patologia , Descoloração de Dente/genética , Pré-Escolar , Feminino , Perda Auditiva Neurossensorial/patologia , Humanos , Lactente , Recém-Nascido , Masculino , Linhagem , Síndrome , Descoloração de Dente/patologia , Erupção Ectópica de Dente/genética , Erupção Ectópica de Dente/patologia
17.
Am J Med Genet ; 71(3): 292-7, 1997 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-9268099

RESUMO

Cleidocranial dysplasia (CCD) is an autosomal dominant, generalized skeletal dysplasia in humans that has been mapped to the short arm of chromosome 6. We report linkage of a CCD mutation to 6p21 in a large family and exclude the bone morphogenetic protein 6 gene (BMP6) as a candidate for the disease by cytogenetic localization and genetic recombination. CCD was linked with a maximal two-point LOD score of 7.22 with marker D6S452 at theta = 0. One relative with a recombination between D6S451 and D6S459 and another individual with a recombination between D6S465 and CCD places the mutation within a 7 cM region between D6S451 and D6S465 at 6p21. A phage P1 genomic clone spanning most of the BMP6 gene hybridized to chromosome 6 in band region p23-p24 using FISH analysis, placing this gene cytogenetically more distal than the region of linkage for CCD. We derived a new polymorphic marker from this same P1 clone and found recombinations between the marker and CCD in this family. The results confirm the map position of CCD on 6p21, further refine the CCD genetic interval by identifying a recombination between D6S451 and D6S459, and exclude BMP6 as a candidate gene.


Assuntos
Proteínas Morfogenéticas Ósseas/genética , Cromossomos Humanos Par 6/genética , Displasia Cleidocraniana/genética , Proteína Morfogenética Óssea 6 , Mapeamento Cromossômico , Primers do DNA/genética , Feminino , Ligação Genética , Marcadores Genéticos , Humanos , Hibridização in Situ Fluorescente , Escore Lod , Masculino , Mutação , Linhagem , Reação em Cadeia da Polimerase , Polimorfismo Genético , Recombinação Genética
18.
Am J Med Genet ; 71(2): 150-5, 1997 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-9217213

RESUMO

We describe a family segregating an autosomal dominant mutation producing a syndrome comprising microcephaly with normal intelligence and short palpebral fissures together with variable signs including thumb hypoplasia, shortness of the middle phalanges of the second and fifth fingers, small feet, a gap between the first and second toes, and mild syndactyly of the toes or fingers. A characteristic radiologic finding in our family is thinning of the proximal end of the first metacarpal and shortening of that metacarpal. The severity of these findings was asymmetric in our patients. This syndrome is similar to patients described by Brunner and Winter [1991: J Med Genet 28: 389-394], Feingold [1975: Synd Ident 3:16-17, 1978: Hosp Prac 13:44-49], and König et al. [1990: Dysmorphol Clin Genet 4:83-86].


Assuntos
Deformidades Congênitas da Mão/genética , Microcefalia/genética , Pré-Escolar , Pálpebras/anormalidades , Feminino , Genes Dominantes , Deformidades Congênitas da Mão/diagnóstico por imagem , Humanos , Lactente , Inteligência , Masculino , Linhagem , Radiografia , Síndrome
19.
Nat Genet ; 15(2): 179-80, 1997 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-9020844

RESUMO

There are several human syndromes which involve defects of the limbs and the Müllerian ducts or its derivatives. The hand-foot-genital (HFG) syndrome is an autosomal dominant, fully penetrant disorder that was originally described by Stern et al. Additional reports describing other affected families have also been published. Limb anomalies include short first metacarpals of normal thickness, small distal phalanges of the thumbs, short middle phalanges of the fifth fingers, and fusion or delayed ossification of wrist bones. In the feet, the great toe is shorter due to a short first metatarsal and a small, pointed distal phalanx. Uterine anomalies are common in females with HFG, and typically involve a partially divided (bicornuate) or completely divided (didelphic) uterus, representing defects of Müllerian duct fusion. Urinary tract malformations in affected HFG females include a displaced urethral opening and malposition of ureteral orifices in the bladder wall; affected males may have hypospadias (ventrally misplaced urethral opening) of variable severity. We report the identification of a HOXA13 nonsense mutation in a family with hand-foot-genital syndrome. The mutation converts a highly conserved tryptophan residue in the homeodomain to a stop codon, which truncates 20 amino acids from the protein and likely eliminates or greatly reduces the ability of the protein to bind to DNA.


Assuntos
Anormalidades Múltiplas/genética , Deformidades Congênitas do Pé/genética , Deformidades Congênitas da Mão/genética , Proteínas de Homeodomínio/genética , Hipospadia/genética , Mutação Puntual , Uretra/anormalidades , Útero/anormalidades , Sequência de Aminoácidos , Códon/genética , DNA/metabolismo , Análise Mutacional de DNA , Feminino , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/metabolismo , Humanos , Masculino , Dados de Sequência Molecular , Linhagem , Ligação Proteica , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Síndrome
20.
Curr Opin Pediatr ; 9(6): 617-22, 1997 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9425595

RESUMO

Hox genes specify developmental boundaries and determine cell fate during morphogenesis. Recently, two human syndromes, synpolydactyly and hand-foot-genital were shown to result from mutations in HOX genes. Both disorders affect digital arch structures and can involve genitourinary malformations. These studies confirm the critical role of these highly conserved transcription factors in the specification of growth and patterning of skeletal elements and axial soft tissues in humans.


Assuntos
Dedos/anormalidades , Genes Homeobox/fisiologia , Sindactilia/genética , Dedos do Pé/anormalidades , Anormalidades Urogenitais/genética , Animais , Criança , Genes Homeobox/genética , Humanos , Morfogênese/genética , Mutação , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...