Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Exp Biol Med (Maywood) ; 241(16): 1865-76, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27216597

RESUMO

Urinary nephrin is a potential non-invasive biomarker of disease. To date, however, most studies of urinary nephrin have been conducted in animal models of diabetic nephropathy, and correlations between urinary nephrin-to-creatinine ratio and other parameters have yet to be evaluated in animal models or patients of kidney disease with podocyte dysfunction. We hypothesized that urinary nephrin-to-creatinine ratio can be up-regulated and is negatively correlated with renal nephrin mRNA levels in animal models of kidney disease, and that increased urinary nephrin-to-creatinine ratio levels are attenuated following administration of glucocorticoids. In the present study, renal nephrin mRNA, urinary nephrin-to-creatinine ratio, urinary protein-to-creatinine ratio, and creatinine clearance ratio were measured in animal models of adriamycin nephropathy, puromycin aminonucleoside nephropathy, anti-glomerular basement membrane glomerulonephritis, and 5/6 nephrectomy. The effects of prednisolone on urinary nephrin-to-creatinine ratio and other parameters in puromycin aminonucleoside (single injection) nephropathy rats were also investigated. In all models tested, urinary nephrin-to-creatinine ratio and urinary protein-to-creatinine ratio increased, while renal nephrin mRNA and creatinine clearance ratio decreased. Urinary nephrin-to-creatinine ratio exhibited a significant negative correlation with renal nephrin mRNA in almost all models, as well as a significant positive correlation with urinary protein-to-creatinine ratio and a significant negative correlation with creatinine clearance ratio. Urinary protein-to-creatinine ratio exhibited a significant negative correlation with renal nephrin mRNA. Following the administration of prednisolone to puromycin aminonucleoside (single injection) nephropathy rats, urinary nephrin-to-creatinine ratio was significantly suppressed and exhibited a significant positive correlation with urinary protein-to-creatinine ratio. In addition, the decrease in number of glomerular Wilms tumor antigen-1-positive cells was attenuated, and urinary nephrin-to-creatinine ratio exhibited a significant negative correlation in these cells. In conclusion, these results suggest that urinary nephrin-to-creatinine ratio level is a useful and reliable biomarker for predicting the amelioration of podocyte dysfunction by candidate drugs in various kidney disease models with podocyte dysfunction. This suggestion will also be validated in a clinical setting in future studies.


Assuntos
Nefropatias/fisiopatologia , Proteínas de Membrana/urina , Podócitos/fisiologia , Animais , Doença Antimembrana Basal Glomerular/fisiopatologia , Doença Antimembrana Basal Glomerular/urina , Biomarcadores/urina , Creatinina/urina , Nefropatias Diabéticas/fisiopatologia , Nefropatias Diabéticas/urina , Doxorrubicina/farmacologia , Nefropatias/induzido quimicamente , Nefropatias/urina , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Puromicina Aminonucleosídeo/farmacologia , Ratos , Ratos Wistar
2.
Exp Eye Res ; 79(3): 367-76, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15336499

RESUMO

PURPOSE: To determine damaged DNA-binding protein 2-gene expression levels in vitro and ex vivo, and the degree of DNA repair in damaged DNA-binding protein 2-overexpressing cultured human corneal endothelium after ultraviolet irradiation. METHODS: Constitutive damaged DNA-binding protein 2-gene expression levels in various human tissues were determined by semi-quantitative reverse transcription-polymerase chain reactions. The dynamics of nucleotide excision repair-related gene expression in cultured human corneal endothelium were investigated in a ribonuclease protection assay after ultraviolet-irradiation. The effect of damaged DNA-binding protein 2 on DNA repair was studied after ultraviolet-irradiation in cultured human corneal endothelium infected with adenovirus carrying damaged DNA-binding protein 2. RESULTS: Human corneal endothelium and epithelium in the donor cornea had the highest constitutive damaged DNA-binding protein 2-gene expression of the various human tissues studied. Gene expression level dynamics associated with nucleotide excision repair factors after ultraviolet-irradiation showed that the increase in the rate of damaged DNA-binding protein 2-gene expression in cultured human corneal endothelium was highest of the nucleotide excision repair-related genes studied. An in vivo DNA repair assay showed that DNA repair efficiency in damaged DNA-binding protein 2-overexpressing cultured human corneal endothelium after ultraviolet-irradiation was significantly improved as compared with that in the control human corneal endothelium. CONCLUSION: The human corneal endothelium abundantly expresses the damaged DNA-binding protein 2-gene that is produced efficiently on ultraviolet exposure. This overexpressed damaged DNA-binding protein 2 in the human corneal endothelium contributes to the protection system against DNA damage after ultraviolet-irradiation. Our findings show a critical role for damaged DNA-binding protein 2 in DNA repair to maintain the human corneal endothelium function.


Assuntos
Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Endotélio Corneano/efeitos da radiação , Proteínas do Olho/genética , Adulto , Idoso , Células Cultivadas , Dano ao DNA/genética , DNA Circular/genética , Regulação da Expressão Gênica/genética , Humanos , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Raios Ultravioleta
3.
Biochem Biophys Res Commun ; 314(4): 1036-43, 2004 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-14751237

RESUMO

Damaged DNA-binding protein (DDB) is a heterodimer (DDB1 and DDB2), which is implicated in the repair of UV-irradiated DNA damage. Here we have identified four DDB2 variants from HeLa cells (D1-D4) that are generated by alternative splicing. Analysis of tissue distribution by RT-PCR indicates that D1 is the most highly expressed in human brain and heart. A DNA repair assay revealed that both D1 and D2 are dominant negative inhibitors. Electrophoresis mobility shift assays indicated that D1 and D2 are not part of the damaged DNA-protein complex. Co-immunoprecipitation studies show that DDB2-WT interacts with D1 and itself. Nuclear import of DDB1 was less induced by transfection with D1 than WT. Based on these results, D1 and D2 are dominant negative inhibitors of DNA repair, which is probably due to disruption of complex formation between DDB1 and DDB2-WT and of DDB1 nuclear import.


Assuntos
Dano ao DNA , Proteínas de Ligação a DNA/fisiologia , Raios Ultravioleta , Sequência de Bases , Ligação Competitiva , Núcleo Celular/metabolismo , Primers do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células HeLa , Humanos , Transporte Proteico , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA