Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Discov ; 9(1): 257, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37479714

RESUMO

Malignant mesothelioma (MMe) is a rare but aggressive malignancy. Although the molecular genetics of MMe is known, including BRCA1-associated protein-1 (BAP1) gene alterations, the prognosis of MMe patients remains poor. Here, we generated BAP1 knockout (BAP1-KO) human mesothelial cell clones to develop molecular-targeted therapeutics based on genetic alterations in MMe. cDNA microarray and quantitative RT-PCR (qRT-PCR) analyses revealed high expression of a calcium/calmodulin-dependent protein kinase type II subunit delta (CAMK2D) gene in the BAP1-KO cells. CAMK2D was highly expressed in 70% of the human MMe tissues (56/80) and correlated with the loss of BAP1 expression, making it a potential diagnostic and therapeutic target for BAP1-deficient MMe. We screened an anticancer drugs library using BAP1-KO cells and successfully identified a CaMKII inhibitor, KN-93, which displayed a more potent and selective antiproliferative effect against BAP1-deficient cells than cisplatin or pemetrexed. KN-93 significantly suppressed the tumor growth in mice xenografted with BAP1-deficient MMe cells. This study is the first to provide a potential molecular-targeted therapeutic approach for BAP1-deficient MMe.

2.
EMBO Rep ; 23(2): e51182, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34927784

RESUMO

The HECT-type ubiquitin E3 ligases including ITCH regulate many aspects of cellular function through ubiquitinating various substrates. These ligases are known to be allosterically autoinhibited and to require an activator protein to fully achieve the ubiquitination of their substrates. Here we demonstrate that FAM189A2, a downregulated gene in breast cancer, encodes a new type of ITCH activator. FAM189A2 is a transmembrane protein harboring PPxY motifs, and the motifs mediate its association with and ubiquitination by ITCH. FAM189A2 also associates with Epsin and accumulates in early and late endosomes along with ITCH. Intriguingly, FAM189A2 facilitates the association of a chemokine receptor CXCR4 with ITCH and enhances ITCH-mediated ubiquitination of CXCR4. FAM189A2-knockout prohibits CXCL12-induced endocytosis of CXCR4, thereby enhancing the effects of CXCL12 on the chemotaxis and mammosphere formation of breast cancer cells. In comparison to other activators or adaptors known in the previous studies, FAM189A2 is a unique activator for ITCH to desensitize CXCR4 activity, and we here propose that FAM189A2 be renamed as ENdosomal TRansmembrane binding with EPsin (ENTREP).


Assuntos
Neoplasias da Mama , Proteínas Repressoras , Ubiquitina-Proteína Ligases , Neoplasias da Mama/genética , Quimiocina CXCL12 , Feminino , Técnicas de Inativação de Genes , Humanos , Receptores CXCR4 , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
3.
Int J Mol Sci ; 22(5)2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33799989

RESUMO

Despite the confirmed anti-cancer effects of T-cell immune checkpoint inhibitors, in colorectal cancer (CRC) they are only effective in a small subset of patients with microsatellite-unstable tumors. Thus, therapeutics targeting other types of CRCs or tumors refractory to T-cell checkpoint inhibitors are desired. The binding of aberrantly expressed CD47 on tumor cells to signal regulatory protein-alpha (SIRPA) on macrophages allows tumor cells to evade immune destruction. Based on these observations, drugs targeting the macrophage checkpoint have been developed with the expectation of anti-cancer effects against T-cell immune checkpoint inhibitor-refractory tumors. In the present study, 269 primary CRCs were evaluated immunohistochemically for CD47, SIRPA, CD68, and CD163 expression to assess their predictive utility and the applicability of CD47-SIRPA axis-modulating drugs. Thirty-five percent of the lesions (95/269) displayed CD47 expression on the cytomembrane of CRC cells. CRCs contained various numbers of tumor-associated immune cells (TAIs) with SIRPA, CD68, or CD163 expression. The log-rank test revealed that patients with CD47-positive CRCs had significantly worse survival than CD47-negative patients. Multivariate Cox hazards regression analysis identified tubular-forming histology (hazard ratio (R) = 0.23), age < 70 years (HR = 0.48), and high SIRPA-positive TAI counts (HR = 0.55) as potential favorable factors. High tumor CD47 expression (HR = 1.75), lymph node metastasis (HR = 2.26), and peritoneal metastasis (HR = 5.80) were cited as potential independent risk factors. Based on our observations, CD47-SIRPA pathway-modulating therapies may be effective in patients with CRC.


Assuntos
Antígenos de Diferenciação/metabolismo , Antígeno CD47/metabolismo , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Receptores Imunológicos/metabolismo , Idoso , Idoso de 80 Anos ou mais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/cirurgia , Feminino , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Pessoa de Meia-Idade , Prognóstico , Receptores de Superfície Celular/metabolismo , Análise de Sobrevida
4.
Pathol Int ; 71(5): 316-324, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33631042

RESUMO

Colorectal cancer (CRC) is one of the most frequent gastrointestinal cancers worldwide, with high morbidity and mortality rates. Despite numerous attempts to identify prognostic markers for the CRC patients, the significance of the association of cellular proliferation markers with survival is controversial. Here we used immunohistochemistry to detect four markers of cellular proliferation expressed in primary CRC tissue specimens (n = 269) to assess their potential to serve as prognostic factors. CRC cells variably expressed phospho-histone H3 (PHH3) (range, 0-76 per high-powered field (HPF); median, 7 per HPF), cyclin A (CCNA) (range, 11.3-73.7%; median, 32%), geminin (GMNN) (range, 7.8-82.0%; median, 37.1%), and marker of proliferation Ki-67 (MKI67) (range, 4.9-96.6%; median, 49.6%). Among them, patients with PHH3-high (≥7 per HPF) tumors uniquely experienced significantly longer 5-year survival than those with PHH3-low (≤6 per HPF) (81.8% vs. 65.5%; P = 0.0047). Multivariable Cox hazards regression analysis identified PHH3-high (hazard ratio, 0.54; 95% confidence interval, 0.31-0.92; P = 0.025) as potential favorable factors. PHH3 levels inversely associated with pT stage (P < 0.0001) and were significantly and inversely associated with tumor diameter (ρ = -0.314, P < 0.0001). These findings support the use of PHH3 immunohistochemistry for predicting the prognoses of patients with CRC.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias Colorretais , Idoso , Idoso de 80 Anos ou mais , Proliferação de Células , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/patologia , Feminino , Histonas/análise , Humanos , Imuno-Histoquímica , Antígeno Ki-67/análise , Masculino , Pessoa de Meia-Idade , Prognóstico
5.
Cell Death Discov ; 6(1): 127, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33298865

RESUMO

Malignant pleural mesothelioma (MPM) is an aggressive malignancy of the pleura that is currently incurable due to the lack of an effective early diagnostic method and specific medication. The CDKN2A (p16) and NF2 genes are both frequently mutated in MPM. To understand how these mutations contribute to MPM tumor growth, we generated NF2/p16 double-knockout (DKO) cell clones using human MeT-5A and HOMC-B1 mesothelial cell lines. Cell growth and migration activities were significantly increased in DKO compared with parental cells. cDNA microarray analysis revealed differences in global gene expression profiles between DKO and parental cells. Quantitative PCR and western blot analyses showed upregulation of CD24 concomitant with increased phosphorylation of AKT, p70S6K, and c-Jun in DKO clones. This upregulation was abrogated by exogenous expression of NF2 and p16. CD24 knockdown in DKO cells significantly decreased TGF-ß1 expression and increased expression of E-cadherin, an epithelial-mesenchymal transition marker. CD24 was highly expressed in human mesothelioma tissues (28/45 cases, 62%) and associated with the loss of NF2 and p16. Public data analysis revealed a significantly shorter survival time in MPM patients with high CD24 gene expression levels. These results strongly indicate the potential use of CD24 as a prognostic marker as well as a novel diagnostic and therapeutic target for MPM.

6.
Nat Commun ; 11(1): 3175, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32581250

RESUMO

Pancreatic cancer is the fourth leading cause of cancer-related deaths in Japan. To identify risk loci, we perform a meta-analysis of three genome-wide association studies comprising 2,039 pancreatic cancer patients and 32,592 controls in the Japanese population. Here, we identify 3 (13q12.2, 13q22.1, and 16p12.3) genome-wide significant loci (P < 5.0 × 10-8), of which 16p12.3 has not been reported in the Western population. The lead single nucleotide polymorphism (SNP) at 16p12.3 is rs78193826 (odds ratio = 1.46, 95% confidence interval = 1.29-1.66, P = 4.28 × 10-9), an Asian-specific, nonsynonymous glycoprotein 2 (GP2) gene variant. Associations between selected GP2 gene variants and pancreatic cancer are replicated in 10,822 additional cases and controls of East Asian origin. Functional analyses using cell lines provide supporting evidence of the effect of rs78193826 on KRAS activity. These findings suggest that GP2 gene variants are probably associated with pancreatic cancer susceptibility in populations of East Asian ancestry.


Assuntos
Proteínas Ligadas por GPI/genética , Predisposição Genética para Doença/genética , Neoplasias Pancreáticas/genética , Povo Asiático/genética , Linhagem Celular Tumoral , Bases de Dados Genéticas , Proteínas Ligadas por GPI/metabolismo , Loci Gênicos , Pleiotropia Genética , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Polimorfismo de Nucleotídeo Único
7.
Oncol Lett ; 19(3): 1741-1750, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32194667

RESUMO

Mesothelin (MSLN) is a glycophosphatidylinositol (GPI)-linked cell surface protein that is highly expressed in several types of malignant tumor, including malignant pleural mesothelioma, ovarian cancer and pancreatic adenocarcinoma. Recently, a comprehensive immunohistochemical study using MN-1 monoclonal antibody identified a significant number of colorectal tumors in which MSLN was expressed. However, the clinicopathological profiles and survival of patients with MSLN-positive colorectal cancer have not been fully analyzed. In the current study, the expression of MSLN in 270 primary and 44 metastatic colorectal tumors was immunohistochemically analyzed to determine the clinical usefulness of MSLN immunohistochemistry and to identify potential candidates for future anti-MSLN therapy. In vitro experiments using colon cancer cell lines were performed to investigate the biological significance of MSLN expression in tumors. The results of univariate analyses identified a significant correlation between MSLN expression and females (P=0.0042). Furthermore, an inverse correlation between MSLN expression and solid/sheet-like proliferation (P=0.014) was also revealed. Additionally, overall survival was significantly shorter in patients with diffuse luminal/membranous expression of MSLN (P=0.018). Multivariable Cox hazards regression analysis revealed diffuse MSLN expression (hazard ratio, 2.26; 95% confidence interval, 1.04-4.91; P=0.039) as a potential risk factor. When comparing primary CRCs and the metastasis of each, a weakly positive correlation was identified for MSLN positivity (% positive cells; R=0.484; P<0.0001). The in vitro experiments revealed a positive role for MSLN in colon cancer cell proliferation. Thus, MSLN immunohistochemistry may be useful in the prognostication of patients with CRC. The results demonstrated that significant numbers of patients with MSLN-positive CRC exhibiting metastasis could be targeted by anti-MSLN therapies.

8.
Oncogene ; 39(9): 1931-1943, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31754215

RESUMO

Cell motility is a tightly regulated phenomenon that supports the accurate formation of organ structure during development and homeostasis, including wound healing and inflammation. Meanwhile, cancer cells exhibit dysregulated motility, which causes spreading and invasion. The Dbl family RhoGEF ARHGEF7/ß-PIX and its binding partner p21-activated kinase PAK1 are overexpressed in a variety of cancers and have been shown to be responsible for cancer cell migration. A key step in motility is the intracellular transport of ARHGEF7-PAK1 complex to the migrating front of cells, where lamellipodia protrusion and cytoskeletal remodeling efficiently occur. However, the molecular mechanisms of the intracellular transport of this complex are not fully understood. Here we revealed that SCL/TAL1-interrupting locus (STIL) is indispensable for the efficient migration of cancer cells. STIL forms a ternary complex with ARHGEF7 and PAK1 and accumulates with those proteins at the lamellipodia protrusion of motile cells. Knockdown of STIL impedes the accumulation of ARHGEF7-PAK1 complex within membrane ruffles and attenuates the phosphorylation of PAK1 substrates and cortical actin remodeling at the migrating front. Intriguingly, ARHGEF7 knockdown also diminishes STIL and PAK1 accumulation in membrane ruffles. Either STIL or ARHGEF7 knockdown impedes cell migration and Rac1 activity at the migrating front of cells. These results indicate that STIL is involved in the ARHGEF7-mediated positive-feedback activation of cytoskeletal remodeling through accumulating the ARHGEF7-PAK1 complex in lamellipodia. We conclude that its involvement is crucial for the polarized formation of Rac1-mediated leading edge, which supports the efficient migration of cancer cells.


Assuntos
Biomarcadores Tumorais/metabolismo , Movimento Celular , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias/patologia , Pseudópodes/fisiologia , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Quinases Ativadas por p21/metabolismo , Actinas , Apoptose , Biomarcadores Tumorais/genética , Membrana Celular/metabolismo , Proliferação de Células , Citoesqueleto , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias/genética , Neoplasias/metabolismo , Fosforilação , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Células Tumorais Cultivadas , Quinases Ativadas por p21/genética
9.
Curr Urol ; 13(2): 74-81, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31768173

RESUMO

INTRODUCTION: Near-infrared fluorescence imaging with indocyanine green is a useful tool during partial nephrectomy. Because an accurate method for judging hasn't been established yet, the success rate may be slightly different and inconsistent. MATERIALS AND METHODS: A total of 21 cases with suspected renal cancers who had undergone a partial nephrectomy were enrolled. We examined differences in the success rate between malignant lesions and the parenchyma by quantifying fluorescence in the pre-resection and ex vivo phases. RESULTS: Pre-resection imaging showed a significant degradation of fluorescence in the focused lesion in 76.2% (16/21) of cases. A significant degradation was observed in 73.7% (14/19) of the total malignant lesions, 70.5% (12/17) of cases with a clear cell lesion, 100% (2/2) of cases with non-clear cell lesions, and 100% (2/2) of benign angiomyolipomas. In contrast, imaging of the ex vivo resected specimens showed a significant degradation in fluorescence of the focused lesions in 85.7% (18/21) of cases. A significantly degradation was observed in 84.2% (16/19) of the total malignant lesions, 82.3% (14/17) of cases with a clear cell lesion, 100% (2/2) of cases with non-clear cell lesions, and 100% (2/2) of benign angiomyolipomas. CONCLUSION: We firstly evaluated the efficacy of quantitative indocyanine green-based fluorescence as an objective method.

10.
Cancer Sci ; 110(1): 180-193, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30417500

RESUMO

Malignant pleural mesothelioma (MPM), a highly refractory tumor, is currently incurable due to the lack of an early diagnosis method and medication, both of which are urgently needed to improve the survival and/or quality of life of patients. NF2 is a tumor suppressor gene and is frequently mutated in MPM. Using a CRISPR/Cas9 system, we generated an NF2-knockout human mesothelial cell line, MeT-5A (NF2-KO). In NF2-KO cell clones, cell growth, clonogenic activity, migration activity, and invasion activity significantly increased compared with those in NF2-WT cell clones. Complementary DNA microarray analysis clearly revealed the differences in global gene expression profile between NF2-WT and NF2-KO cell clones. Quantitative PCR analysis and western blot analysis showed that the upregulation of fibroblast growth factor receptor 2 (FGFR2) was concomitant with the increases in phosphorylation levels of JNK, c-Jun, and retinoblastoma (Rb) in NF2-KO cell clones. These increases were all abrogated by the exogenous expression of NF2 in the NF2-KO clone. In addition, the disruption of FGFR2 in the NF2-KO cell clone suppressed cell proliferation as well as the phosphorylation levels of JNK, c-Jun, and Rb. Notably, FGFR2 was found to be highly expressed in NF2-negative human mesothelioma tissues (11/12 cases, 91.7%) but less expressed in NF2-positive tissues. Collectively, these findings suggest that NF2 deficiency might play a role in the tumorigenesis of human mesothelium through mediating FGFR2 expression; FGFR2 would be a candidate molecule to develop therapeutic and diagnostic strategies for targeting MPM with NF2 loss.


Assuntos
Sistemas CRISPR-Cas , Neoplasias Pulmonares/genética , Mesotelioma/genética , Neurofibromina 2/genética , Neoplasias Pleurais/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Sequência de Bases , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Pré-Escolar , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Mesotelioma/metabolismo , Mesotelioma/patologia , Mesotelioma Maligno , Pessoa de Meia-Idade , Neurofibromina 2/metabolismo , Neoplasias Pleurais/metabolismo , Neoplasias Pleurais/patologia , Homologia de Sequência do Ácido Nucleico , Adulto Jovem
11.
Genes Cells ; 23(12): 1023-1042, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30318703

RESUMO

The centrosome is a small but important organelle that participates in centriole duplication, spindle formation, and ciliogenesis. Each event is regulated by key enzymatic reactions, but how these processes are integrated remains unknown. Recent studies have reported that ciliogenesis is controlled by distal appendage proteins such as FBF1, also known as Albatross. However, the precise role of Albatross in the centrosome cycle, including centriole duplication and centrosome separation, remains to be determined. Here, we report a novel function for Albatross at the proximal ends of centrioles. Using Albatross monospecific antibodies, full-length constructs, and siRNAs for rescue experiments, we found that Albatross mediates centriole duplication by recruiting HsSAS-6, a cartwheel protein of centrioles. Moreover, Albatross participates in centrosome separation during mitosis by recruiting Plk1 to residue S348 of Albatross after its phosphorylation. Taken together, our results show that Albatross is a novel protein that spatiotemporally integrates different aspects of centrosome function, namely ciliogenesis, centriole duplication, and centrosome separation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Centríolos/metabolismo , Centrossomo/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Animais , Proteínas de Ciclo Celular/metabolismo , Células HEK293 , Células HeLa/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Fosforilação , Fosfosserina/metabolismo , Ligação Proteica , Domínios Proteicos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Serina/metabolismo , Quinase 1 Polo-Like
12.
Sci Rep ; 7: 39967, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-28059168

RESUMO

Despite growing demand for truly naïve imaging, label-free observation of cilium-related structure remains challenging, and validation of the pertinent molecules is correspondingly difficult. In this study, in retinas and cultured cells, we distinctively visualized Rootletin filaments in rootlets in the second harmonic generation (SHG) channel, integrated in custom coherent nonlinear optical microscopy (CNOM) with a simple, compact, and ultra-broadband supercontinuum light source. This SHG signal was primarily detected on rootlets of connecting cilia in the retinal photoreceptor and was validated by colocalization with anti-Rootletin staining. Transfection of cells with Rootletin fragments revealed that the SHG signal can be ascribed to filaments assembled from the R234 domain, but not to cross-striations assembled from the R123 domain. Consistent with this, Rootletin-depleted cells lacked SHG signal expected as centrosome linker. As a proof of concept, we confirmed that similar fibrous SHG was observed even in unicellular ciliates. These findings have potential for broad applications in clinical diagnosis and biophysical experiments with various organisms.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Retina/ultraestrutura , Microscopia de Geração do Segundo Harmônico/métodos , Animais , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Cílios , Humanos , Ratos , Retina/metabolismo
13.
J Cell Biol ; 212(4): 409-23, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26880200

RESUMO

Primary cilia protrude from the surface of quiescent cells and disassemble at cell cycle reentry. We previously showed that ciliary reassembly is suppressed by trichoplein-mediated Aurora A activation pathway in growing cells. Here, we report that Ndel1, a well-known modulator of dynein activity, localizes at the subdistal appendage of the mother centriole, which nucleates a primary cilium. In the presence of serum, Ndel1 depletion reduces trichoplein at the mother centriole and induces unscheduled primary cilia formation, which is reverted by forced trichoplein expression or coknockdown of KCTD17 (an E3 ligase component protein for trichoplein). Serum starvation induced transient Ndel1 degradation, subsequent to the disappearance of trichoplein at the mother centriole. Forced expression of Ndel1 suppressed trichoplein degradation and axonemal microtubule extension during ciliogenesis, similar to trichoplein induction or KCTD17 knockdown. Most importantly, the proportion of ciliated and quiescent cells was increased in the kidney tubular epithelia of newborn Ndel1-hypomorphic mice. Thus, Ndel1 acts as a novel upstream regulator of the trichoplein-Aurora A pathway to inhibit primary cilia assembly.


Assuntos
Aurora Quinase A/metabolismo , Proteínas de Transporte/metabolismo , Proliferação de Células , Células Epiteliais/enzimologia , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Animais Recém-Nascidos , Aurora Quinase A/genética , Proteínas de Transporte/genética , Pontos de Checagem do Ciclo Celular , Centríolos/enzimologia , Cílios/enzimologia , Genótipo , Células HeLa , Humanos , Túbulos Renais/citologia , Túbulos Renais/enzimologia , Camundongos , Camundongos Knockout , Microtúbulos/enzimologia , Fenótipo , Estabilidade Proteica , Proteólise , Interferência de RNA , Células Swiss 3T3 , Fatores de Tempo , Transfecção
14.
J Biol Chem ; 290(21): 12984-98, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25847236

RESUMO

Tetraploidy, a state in which cells have doubled chromosomal sets, is observed in ∼20% of solid tumors and is considered to frequently precede aneuploidy in carcinogenesis. Tetraploidy is also detected during terminal differentiation and represents a hallmark of aging. Most tetraploid cultured cells are arrested by p53 stabilization. However, the fate of tetraploid cells in vivo remains largely unknown. Here, we analyze the ability to repair wounds in the skin of phosphovimentin-deficient (VIM(SA/SA)) mice. Early into wound healing, subcutaneous fibroblasts failed to undergo cytokinesis, resulting in binucleate tetraploidy. Accordingly, the mRNA level of p21 (a p53-responsive gene) was elevated in a VIM(SA/SA)-specific manner. Disappearance of tetraploidy coincided with an increase in aneuploidy. Thereafter, senescence-related markers were significantly elevated in VIM(SA/SA) mice. Because our tetraploidy-prone mouse model also exhibited subcutaneous fat loss at the age of 14 months, another premature aging phenotype, our data suggest that following cytokinetic failure, a subset of tetraploid cells enters a new cell cycle and develops into aneuploid cells in vivo, which promote premature aging.


Assuntos
Aneuploidia , Citocinese , Envelhecimento da Pele/patologia , Gordura Subcutânea/patologia , Tetraploidia , Vimentina/fisiologia , Animais , Western Blotting , Ciclo Celular , Proliferação de Células , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Imunofluorescência , Técnicas Imunoenzimáticas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitose/fisiologia , Fosforilação , Gordura Subcutânea/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Cicatrização
15.
J Biol Chem ; 288(50): 35626-35, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24142690

RESUMO

Vimentin, a type III intermediate filament (IF) protein, is phosphorylated predominantly in mitosis. The expression of a phosphorylation-compromised vimentin mutant in T24 cultured cells leads to cytokinetic failure, resulting in binucleation (multinucleation). The physiological significance of intermediate filament phosphorylation during mitosis for organogenesis and tissue homeostasis was uncertain. Here, we generated knock-in mice expressing vimentin that have had the serine sites phosphorylated during mitosis substituted by alanine residues. Homozygotic mice (VIM(SA/SA)) presented with microophthalmia and cataracts in the lens, whereas heterozygotic mice (VIM(WT/SA)) were indistinguishable from WT (VIM(WT/WT)) mice. In VIM(SA/SA) mice, lens epithelial cell number was not only reduced but the cells also exhibited chromosomal instability, including binucleation and aneuploidy. Electron microscopy revealed fiber membranes that were disorganized in the lenses of VIM(SA/SA), reminiscent of similar characteristic changes seen in age-related cataracts. Because the mRNA level of the senescence (aging)-related gene was significantly elevated in samples from VIM(SA/SA), the lens phenotype suggests a possible causal relationship between chromosomal instability and premature aging.


Assuntos
Aneuploidia , Catarata/etiologia , Catarata/metabolismo , Senescência Celular , Endoftalmite/etiologia , Endoftalmite/metabolismo , Células Epiteliais/patologia , Mitose , Vimentina/metabolismo , Alelos , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Catarata/genética , Catarata/patologia , Núcleo Celular/patologia , Endoftalmite/genética , Endoftalmite/patologia , Células Epiteliais/metabolismo , Técnicas de Introdução de Genes , Cristalino/patologia , Camundongos , Dados de Sequência Molecular , Fosforilação , Vimentina/química , Vimentina/genética
16.
PLoS One ; 8(9): e75101, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24086449

RESUMO

Keratins (Ks), the intermediate filament (IF) proteins of epithelia, are coordinately expressed as pairs in a cell-lineage and differentiation manner. Cortical thymic epithelial cells (cTECs) predominantly express the simple epithelium keratin 8/18 (K8/K18) pair, whereas medullary thymic epithelial cells (mTECs) express the stratified epithelium K5/K14 pair, with TECs exhibiting K5 and K8 at the cortico-medullary junction in mature thymus. In the work reported here, we used wild-type (WT) and K8-knockout (K8-null) mice to address the contribution of K8/K18 IFs in the maintenance of the thymic epithelial structure. K8-null thymus maintained the differential cell segregation at the cortex versus the medulla observed in WT thymus, and the distribution of immature thymocytes at the cortex. The K8/K18 loss did not affect thymocyte development. However, it massively perturbed the TEC morphology both at the cortex and the medulla, along with a prominent depletion of cTECs. Such tissue alterations coincided with an increase in apoptosis and a reduced expression of Albatross (Fas-binding factor-1), also known for its capacity to bind K8/18 IFs. In addition, the K8/K18 loss affected the distribution of K5/K14-positive mTECs, but not their differentiation status. Together, the results indicate that K8/K18 IFs constitute key promoters of the thymic epithelium integrity.


Assuntos
Epitélio/anatomia & histologia , Queratina-8/metabolismo , Timo/anatomia & histologia , Animais , Epitélio/metabolismo , Citometria de Fluxo , Imunofluorescência , Queratina-18/metabolismo , Queratina-8/genética , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estatísticas não Paramétricas
17.
Cell Mol Life Sci ; 70(20): 3893-905, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23475109

RESUMO

In most cell types, primary cilia protrude from the cell surface and act as major hubs for cell signaling, cell differentiation, and cell polarity. With the exception of some cells ciliated during cell proliferation, most cells begin to disassemble their primary cilia at cell cycle re-entry. Although the role of primary cilia disassembly on cell cycle progression is still under debate, recent data have emerged to support the idea that primary cilia exert influence on cell cycle progression. In this review, we emphasize a non-mitotic role of Aurora-A not only in the ciliary resorption at cell cycle re-entry but also in continuous suppression of cilia regeneration during cell proliferation. We also summarize recent new findings indicating that forced induction/suppression of primary cilia can affect cell cycle progression, in particular the transition from G0/G1 to S phase. In addition, we speculate how (de)ciliation affects cell cycle progression.


Assuntos
Ciclo Celular , Proliferação de Células , Cílios/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Regeneração , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Aurora Quinases , Centrossomo/metabolismo , Humanos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Estabilidade Proteica , Transporte Proteico , Transdução de Sinais
18.
J Biol Chem ; 287(29): 24516-24, 2012 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-22613718

RESUMO

Accumulating evidence points to cross-talk between FcεRI and CC chemokine receptor (CCR)-mediated signaling pathways in mast cells. Here, we propose that vimentin, a protein comprising type III intermediate filament, participates in such cross-talk for CCL2/monocyte chemotactic protein 1 (MCP-1) production in mast cells, which is a mechanism for allergic inflammation. Co-stimulation via FcεRI, using IgE/antigen, and CCR1, using recombinant CCL3/macrophage inflammatory protein-1α (MIP-1α), increased expression of phosphorylated, disassembled, and soluble vimentin in rat basophilic leukemia (RBL)-2H3 cells expressing human CCR1 (RBL-CCR1 cells) and bone marrow-derived murine mast cells, both models of mucosal type mast cells. Furthermore, co-stimulation enhanced production of CCL2 as well as phosphorylation of MAPK. Treating the cells with p38 MAPK inhibitor SB203580, but not with MEK inhibitor PD98058, reduced CCL2 production, suggesting that p38 MAPK, but not ERK1/2, plays a critical role in the chemokine production. Immunoprecipitation analysis showed that vimentin interacts with phosphorylated ERK1/2 and p38 MAPKs in the co-simulated cells. Preventing disassembly of the vimentin by aggregating vimentin filaments using ß,ß'-iminodipropionitrile reduced the interaction of vimentin with phosphorylated MAPKs as well as CCL2 production in the cells. Taken together, disassembled vimentin interacting with phosphorylated p38 MAPK could mediate CCL2 production in mast cells upon FcεRI and CCR1 activation.


Assuntos
Mastócitos/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Receptores CCR1/metabolismo , Receptores de IgG/metabolismo , Vimentina/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Quimiocina CCL2/metabolismo , Eletroforese em Gel Bidimensional , Ensaio de Imunoadsorção Enzimática , Humanos , Imidazóis/farmacologia , Imunoprecipitação , Mastócitos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Compostos Orgânicos/farmacologia , Fosforilação , Ligação Proteica , Piridinas/farmacologia , Ratos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
19.
J Cell Biol ; 197(3): 391-405, 2012 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-22529102

RESUMO

The primary cilium is an antenna-like organelle that modulates differentiation, sensory functions, and signal transduction. After cilia are disassembled at the G0/G1 transition, formation of cilia is strictly inhibited in proliferating cells. However, the mechanisms of this inhibition are unknown. In this paper, we show that trichoplein disappeared from the basal body in quiescent cells, whereas it localized to mother and daughter centrioles in proliferating cells. Exogenous expression of trichoplein inhibited primary cilia assembly in serum-starved cells, whereas ribonucleic acid interference-mediated depletion induced primary cilia assembly upon cultivation with serum. Trichoplein controlled Aurora A (AurA) activation at the centrioles predominantly in G1 phase. In vitro analyses confirmed that trichoplein bound and activated AurA directly. Using trichoplein mutants, we demonstrate that the suppression of primary cilia assembly by trichoplein required its ability not only to localize to centrioles but also to bind and activate AurA. Trichoplein or AurA knockdown also induced G0/G1 arrest, but this phenotype was reversed when cilia formation was prevented by simultaneous knockdown of IFT-20. These data suggest that the trichoplein-AurA pathway is required for G1 progression through a key role in the continuous suppression of primary cilia assembly.


Assuntos
Proteínas de Transporte/metabolismo , Proliferação de Células , Centríolos/metabolismo , Cílios/fisiologia , Fase G1/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Aurora Quinases , Western Blotting , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/genética , Diferenciação Celular , Células Cultivadas , Imunofluorescência , Humanos , Imunoprecipitação , Microtúbulos/metabolismo , Morfogênese , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , RNA Interferente Pequeno/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/metabolismo , Transdução de Sinais
20.
J Cell Sci ; 124(Pt 6): 857-64, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21325031

RESUMO

The keratin cytoskeleton performs several functions in epithelial cells and provides regulated interaction sites for scaffold proteins, including trichoplein. Previously, we found that trichoplein was localized on keratin intermediate filaments and desmosomes in well-differentiated, non-dividing epithelia. Here, we report that trichoplein is widely expressed and has a major function in the correct localization of the centrosomal protein ninein in epithelial and non-epithelial cells. Immunocytochemical analysis also revealed that this protein is concentrated at the subdistal to medial zone of both mother and daughter centrioles. Trichoplein binds the centrosomal proteins Odf2 and ninein, which are localized at the distal to subdistal ends of the mother centriole. Trichoplein depletion abolished the recruitment of ninein, but not Odf2, specifically at the subdistal end. However, Odf2 depletion inhibited the recruitment of trichoplein to a mother centriole, whereas ninein depletion did not. In addition, the depletion of each molecule impaired MT anchoring at the centrosome. These results suggest that trichoplein has a crucial role in MT-anchoring activity at the centrosome in proliferating cells, probably through its complex formation with Odf2 and ninein.


Assuntos
Proteínas de Transporte/metabolismo , Centrossomo/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas de Choque Térmico/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Transporte/genética , Linhagem Celular , Proteínas do Citoesqueleto/genética , Proteínas de Choque Térmico/genética , Humanos , Microtúbulos/genética , Proteínas Nucleares/genética , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...