Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hepatology ; 79(4): 829-843, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37603610

RESUMO

BACKGROUND AND AIMS: Cancer cells reprogram their metabolic pathways to support bioenergetic and biosynthetic needs and to maintain their redox balance. In several human tumors, the Keap1-Nrf2 system controls proliferation and metabolic reprogramming by regulating the pentose phosphate pathway (PPP). However, whether this metabolic reprogramming also occurs in normal proliferating cells is unclear. APPROACH AND RESULTS: To define the metabolic phenotype in normal proliferating hepatocytes, we induced cell proliferation in the liver by 3 distinct stimuli: liver regeneration by partial hepatectomy and hepatic hyperplasia induced by 2 direct mitogens: lead nitrate (LN) or triiodothyronine. Following LN treatment, well-established features of cancer metabolic reprogramming, including enhanced glycolysis, oxidative PPP, nucleic acid synthesis, NAD + /NADH synthesis, and altered amino acid content, as well as downregulated oxidative phosphorylation, occurred in normal proliferating hepatocytes displaying Nrf2 activation. Genetic deletion of Nrf2 blunted LN-induced PPP activation and suppressed hepatocyte proliferation. Moreover, Nrf2 activation and following metabolic reprogramming did not occur when hepatocyte proliferation was induced by partial hepatectomy or triiodothyronine. CONCLUSIONS: Many metabolic changes in cancer cells are shared by proliferating normal hepatocytes in response to a hostile environment. Nrf2 activation is essential for bridging metabolic changes with crucial components of cancer metabolic reprogramming, including the activation of oxidative PPP. Our study demonstrates that matured hepatocytes exposed to LN undergo cancer-like metabolic reprogramming and offers a rapid and useful in vivo model to study the molecular alterations underpinning the differences/similarities of metabolic changes in normal and neoplastic hepatocytes.


Assuntos
Fator 2 Relacionado a NF-E2 , Neoplasias , Animais , Humanos , Ratos , Proliferação de Células , Hepatócitos/metabolismo , Hiperplasia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Reprogramação Metabólica , Neoplasias/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Tri-Iodotironina/genética , Tri-Iodotironina/metabolismo
2.
Nucleic Acids Res ; 52(D1): D622-D632, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37930845

RESUMO

Modern medicine is increasingly focused on personalized medicine, and multi-omics data is crucial in understanding biological phenomena and disease mechanisms. Each ethnic group has its unique genetic background with specific genomic variations influencing disease risk and drug response. Therefore, multi-omics data from specific ethnic populations are essential for the effective implementation of personalized medicine. Various prospective cohort studies, such as the UK Biobank, All of Us and Lifelines, have been conducted worldwide. The Tohoku Medical Megabank project was initiated after the Great East Japan Earthquake in 2011. It collects biological specimens and conducts genome and omics analyses to build a basis for personalized medicine. Summary statistical data from these analyses are available in the jMorp web database (https://jmorp.megabank.tohoku.ac.jp), which provides a multidimensional approach to the diversity of the Japanese population. jMorp was launched in 2015 as a public database for plasma metabolome and proteome analyses and has been continuously updated. The current update will significantly expand the scale of the data (metabolome, genome, transcriptome, and metagenome). In addition, the user interface and backend server implementations were rewritten to improve the connectivity between the items stored in jMorp. This paper provides an overview of the new version of the jMorp.


Assuntos
Bases de Dados Genéticas , Multiômica , População , Medicina de Precisão , Humanos , Genômica/métodos , Japão , Estudos Prospectivos , População/genética
3.
Int J Mol Sci ; 24(18)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37762438

RESUMO

Drk, a homologue of human GRB2 in Drosophila, receives signals from outside the cells through the interaction of its SH2 domain with the phospho-tyrosine residues in the intracellular regions of receptor tyrosine kinases (RTKs) such as Sevenless, and transduces the signals downstream through the association of its N- and C-terminal SH3 domains (Drk-NSH3 and Drk-CSH3, respectively) with proline-rich motifs (PRMs) in Son of Sevenless (Sos) or Daughter of Sevenless (Dos). Isolated Drk-NSH3 exhibits a conformational equilibrium between the folded and unfolded states, while Drk-CSH3 adopts only a folded confirmation. Drk interacts with PRMs of the PxxPxR motif in Sos and the PxxxRxxKP motif in Dos. Our previous study has shown that Drk-CSH3 can bind to Sos, but the interaction between Drk-NSH3 and Dos has not been investigated. To assess the affinities of both SH3 domains towards Sos and Dos, we conducted NMR titration experiments using peptides derived from Sos and Dos. Sos-S1 binds to Drk-NSH3 with the highest affinity, strongly suggesting that the Drk-Sos multivalent interaction is initiated by the binding of Sos-S1 and NSH3. Our results also revealed that the two Sos-derived PRMs clearly favour NSH3 for binding, whereas the two Dos-derived PRMs show almost similar affinity for NSH3 and CSH3. We have also performed docking simulations based on the chemical shift perturbations caused by the addition of Sos- and Dos-derived peptides. Finally, we discussed the various modes in the interactions of Drk with Sos/Dos.


Assuntos
Drosophila , Núcleo Familiar , Animais , Humanos , Peptídeos , Prolina , Domínios de Homologia de src , Tirosina , Proteína Son Of Sevenless de Drosófila
4.
Curr Res Transl Med ; 71(1): 103367, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36446162

RESUMO

BACKGROUND: Since dementia is preventable with early interventions, biomarkers that assist in diagnosing early stages of dementia, such as mild cognitive impairment (MCI), are urgently needed. METHODS: Multiomics analysis of amnestic MCI (aMCI) peripheral blood (n = 25) was performed covering the transcriptome, microRNA, proteome, and metabolome. Validation analysis for microRNAs was conducted in an independent cohort (n = 12). Artificial intelligence was used to identify the most important features for predicting aMCI. FINDINGS: We found that hsa-miR-4455 is the best biomarker in all omics analyses. The diagnostic index taking a ratio of hsa-miR-4455 to hsa-let-7b-3p predicted aMCI patients against healthy subjects with 97% overall accuracy. An integrated review of multiomics data suggested that a subset of T cells and the GCN (general control nonderepressible) pathway are associated with aMCI. INTERPRETATION: The multiomics approach has enabled aMCI biomarkers with high specificity and illuminated the accompanying changes in peripheral blood. Future large-scale studies are necessary to validate candidate biomarkers for clinical use.


Assuntos
Disfunção Cognitiva , Demência , MicroRNAs , Humanos , Inteligência Artificial , Multiômica , Progressão da Doença , Testes Neuropsicológicos , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/genética , Disfunção Cognitiva/psicologia , Biomarcadores
5.
Metabolites ; 11(10)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34677367

RESUMO

Metabolic profiling is an omics approach that can be used to observe phenotypic changes, making it particularly attractive for biomarker discovery. Although several candidate metabolites biomarkers for disease expression have been identified in recent clinical studies, the reference values of healthy subjects have not been established. In particular, the accuracy of concentrations measured by mass spectrometry (MS) is unclear. Therefore, comprehensive metabolic profiling in large-scale cohorts by MS to create a database with reference ranges is essential for evaluating the quality of the discovered biomarkers. In this study, we tested 8700 plasma samples by commercial kit-based metabolomics and separated them into two groups of 6159 and 2541 analyses based on the different ultra-high-performance tandem mass spectrometry (UHPLC-MS/MS) systems. We evaluated the quality of the quantified values of the detected metabolites from the reference materials in the group of 2541 compared with the quantified values from other platforms, such as nuclear magnetic resonance (NMR), supercritical fluid chromatography tandem mass spectrometry (SFC-MS/MS) and UHPLC-Fourier transform mass spectrometry (FTMS). The values of the amino acids were highly correlated with the NMR results, and lipid species such as phosphatidylcholines and ceramides showed good correlation, while the values of triglycerides and cholesterol esters correlated less to the lipidomics analyses performed using SFC-MS/MS and UHPLC-FTMS. The evaluation of the quantified values by MS-based techniques is essential for metabolic profiling in a large-scale cohort.

6.
Commun Biol ; 4(1): 576, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33990683

RESUMO

The Keap1-Nrf2 system is central for mammalian cytoprotection against various stresses and a drug target for disease prevention and treatment. One model for the molecular mechanisms leading to Nrf2 activation is the Hinge-Latch model, where the DLGex-binding motif of Nrf2 dissociates from Keap1 as a latch, while the ETGE motif remains attached to Keap1 as a hinge. To overcome the technical difficulties in examining the binding status of the two motifs during protein-protein interaction (PPI) simultaneously, we utilized NMR spectroscopy titration experiments. Our results revealed that latch dissociation is triggered by low-molecular-weight Keap1-Nrf2 PPI inhibitors and occurs during p62-mediated Nrf2 activation, but not by electrophilic Nrf2 inducers. This study demonstrates that Keap1 utilizes a unique Hinge-Latch mechanism for Nrf2 activation upon challenge by non-electrophilic PPI-inhibiting stimuli, and provides critical insight for the pharmacological development of next-generation Nrf2 activators targeting the Keap1-Nrf2 PPI.


Assuntos
Proteína 1 Associada a ECH Semelhante a Kelch/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Domínios e Motivos de Interação entre Proteínas/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Sítios de Ligação , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Ligação Proteica , Conformação Proteica
7.
Nucleic Acids Res ; 49(D1): D536-D544, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33179747

RESUMO

In the Tohoku Medical Megabank project, genome and omics analyses of participants in two cohort studies were performed. A part of the data is available at the Japanese Multi Omics Reference Panel (jMorp; https://jmorp.megabank.tohoku.ac.jp) as a web-based database, as reported in our previous manuscript published in Nucleic Acid Research in 2018. At that time, jMorp mainly consisted of metabolome data; however, now genome, methylome, and transcriptome data have been integrated in addition to the enhancement of the number of samples for the metabolome data. For genomic data, jMorp provides a Japanese reference sequence obtained using de novo assembly of sequences from three Japanese individuals and allele frequencies obtained using whole-genome sequencing of 8,380 Japanese individuals. In addition, the omics data include methylome and transcriptome data from ∼300 samples and distribution of concentrations of more than 755 metabolites obtained using high-throughput nuclear magnetic resonance and high-sensitivity mass spectrometry. In summary, jMorp now provides four different kinds of omics data (genome, methylome, transcriptome, and metabolome), with a user-friendly web interface. This will be a useful scientific data resource on the general population for the discovery of disease biomarkers and personalized disease prevention and early diagnosis.


Assuntos
Povo Asiático/genética , Genética Populacional , Genômica , Metilação de DNA/genética , Bases de Dados Genéticas , Variação Genética , Genoma Humano , Estudo de Associação Genômica Ampla , Humanos , Metaboloma , Proteoma/metabolismo , Transcriptoma/genética
8.
Commun Biol ; 3(1): 662, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177615

RESUMO

We performed a metabolome genome-wide association study for the Japanese population in the prospective cohort study of Tohoku Medical Megabank. By combining whole-genome sequencing and nontarget metabolome analyses, we identified a large number of novel associations between genetic variants and plasma metabolites. Of the identified metabolite-associated genes, approximately half have already been shown to be involved in various diseases. We identified metabolite-associated genes involved in the metabolism of xenobiotics, some of which are from intestinal microorganisms, indicating that the identified genetic variants also markedly influence the interaction between the host and symbiotic bacteria. We also identified five associations that appeared to be female-specific. A number of rare variants that influence metabolite levels were also found, and combinations of common and rare variants influenced the metabolite levels more profoundly. These results support our contention that metabolic phenotyping provides important insights into how genetic and environmental factors provoke human diseases.


Assuntos
Povo Asiático/genética , Variação Genética/genética , Metaboloma/genética , Feminino , Estudo de Associação Genômica Ampla , Humanos , Japão , Masculino , Complexos Multienzimáticos/genética , Orotato Fosforribosiltransferase/genética , Orotidina-5'-Fosfato Descarboxilase/genética , Fenótipo , Estudos Prospectivos
9.
J Biochem ; 165(2): 139-158, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30452759

RESUMO

Personalized healthcare (PHC) based on an individual's genetic make-up is one of the most advanced, yet feasible, forms of medical care. The Tohoku Medical Megabank (TMM) Project aims to combine population genomics, medical genetics and prospective cohort studies to develop a critical infrastructure for the establishment of PHC. To date, a TMM CommCohort (adult general population) and a TMM BirThree Cohort (birth+three-generation families) have conducted recruitments and baseline surveys. Genome analyses as part of the TMM Project will aid in the development of a high-fidelity whole-genome Japanese reference panel, in designing custom single-nucleotide polymorphism (SNP) arrays specific to Japanese, and in estimation of the biological significance of genetic variations through linked investigations of the cohorts. Whole-genome sequencing from >3,500 unrelated Japanese and establishment of a Japanese reference genome sequence from long-read data have been done. We next aim to obtain genotype data for all TMM cohort participants (>150,000) using our custom SNP arrays. These data will help identify disease-associated genomic signatures in the Japanese population, while genomic data from TMM BirThree Cohort participants will be used to improve the reference genome panel. Follow-up of the cohort participants will allow us to test the genetic markers and, consequently, contribute to the realization of PHC.


Assuntos
Povo Asiático/genética , Genética Médica/tendências , Genoma Humano/genética , Genômica , Medicina de Precisão/tendências , Estudos de Coortes , Feminino , Humanos , Japão , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Padrões de Referência
10.
Genes Cells ; 23(6): 406-417, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29701317

RESUMO

Population-based prospective cohort studies are indispensable for modern medical research as they provide important knowledge on the influences of many kinds of genetic and environmental factors on the cause of disease. Although traditional cohort studies are mainly conducted using questionnaires and physical examinations, modern cohort studies incorporate omics and genomic approaches to obtain comprehensive physical information, including genetic information. Here, we report the design and midterm results of multi-omics analysis on population-based prospective cohort studies from the Tohoku Medical Megabank (TMM) Project. We have incorporated genomic and metabolomic studies in the TMM cohort study as both metabolome and genome analyses are suitable for high-throughput analysis of large-scale cohort samples. Moreover, an association study between the metabolome and genome show that metabolites are an important intermediate phenotype connecting genetic and lifestyle factors to physical and pathologic phenotypes. We apply our metabolome and genome analyses to large-scale cohort samples in the following studies.


Assuntos
Genoma Humano , Genômica/métodos , Metabolômica/métodos , Humanos , Fenótipo , Estudos Prospectivos
11.
Nucleic Acids Res ; 46(D1): D551-D557, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29069501

RESUMO

We developed jMorp, a new database containing metabolome and proteome data for plasma obtained from >5000 healthy Japanese volunteers from the Tohoku Medical Megabank Cohort Study, which is available at https://jmorp.megabank.tohoku.ac.jp. Metabolome data were measured by proton nuclear magnetic resonance (NMR) and liquid chromatography-mass spectrometry (LC-MS), while proteome data were obtained by nanoLC-MS. We released the concentration distributions of 37 metabolites identified by NMR, distributions of peak intensities of 257 characterized metabolites by LC-MS, and observed frequencies of 256 abundant proteins. Additionally, correlation networks for the metabolites can be observed using an interactive network viewer. Compared with some existing databases, jMorp has some unique features: (i) Metabolome data were obtained using a single protocol in a single institute, ensuring that measurement biases were significantly minimized; (ii) The database contains large-scale data for healthy volunteers with various health records and genome data and (iii) Correlations between metabolites can be easily observed using the graphical viewer. Metabolites data are becoming important intermediate markers for evaluating the health states of humans, and thus jMorp is an outstanding resource for a wide range of researchers, particularly those in the fields of medical science, applied molecular biology, and biochemistry.


Assuntos
Bases de Dados Genéticas , Metabolômica , Proteômica , Adulto , Idoso , Povo Asiático , Proteínas Sanguíneas/metabolismo , Cromatografia Líquida , Estudos de Coortes , Feminino , Estudo de Associação Genômica Ampla , Voluntários Saudáveis , Humanos , Japão , Espectroscopia de Ressonância Magnética , Masculino , Espectrometria de Massas , Metaboloma , Pessoa de Meia-Idade , Proteoma , Valores de Referência
12.
Biotechnol Lett ; 39(3): 375-382, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27858320

RESUMO

OBJECTIVES: We examined the importance of aptamer usage under the same condition as the selection process by employing the previously selected aptamers for calmodulin (CaM) which includes a non-natural fluorogenic amino acid, 7-nitro-2,1,3-benzoxadiazole. RESULTS: We added five amino acids at the N-terminus which was employed for the selection and then we tested the affinity and selectivity for CaM binding. Surface plasmon resonance and fluorescence measurements showed that the additional amino acids for one of the aptamers drastically improved binding affinity to CaM, indicating the importance of aptamer use under the same conditions as the selection process. Such drastic improvement in affinity was not observed for the sequence which had been reported previously. Nuclear magnetic resonance data identified that the primary binding site is located in a C-terminal of CaM and the additional residues enhance interactions with CaM. CONCLUSIONS: We found that the addition of the common sequence, which was employed for ribosome display, makes the affinity of a selected peptide as strong as the previously reported peptide.


Assuntos
Aptâmeros de Peptídeos/metabolismo , Calmodulina/metabolismo , Sequência de Aminoácidos , Animais , Aptâmeros de Peptídeos/química , Bovinos , Fluorescência , Espectroscopia de Ressonância Magnética , Ligação Proteica , Solubilidade , Ressonância de Plasmônio de Superfície
13.
Biochem Biophys Rep ; 8: 318-324, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28955971

RESUMO

In prokaryotic cells, genomic DNA forms an aggregated structure with various nucleoid-associated proteins (NAPs). The functions of genomic DNA are cooperatively modulated by NAPs, of which HU is considered to be one of the most important. HU binds double-stranded DNA (dsDNA) and serves as a structural modulator in the genome architecture. It plays important roles in diverse DNA functions, including replication, segregation, transcription and repair. Interestingly, it has been reported that HU also binds single-stranded DNA (ssDNA) regardless of sequence. However, structural analysis of HU with ssDNA has been lacking, and the functional relevance of this binding remains elusive. In this study, we found that ssDNA induced a significant change in the secondary structure of Thermus thermophilus HU (TtHU), as observed by analysis of circular dichroism spectra. Notably, this change in secondary structure was sequence specific, because the complementary ssDNA or dsDNA did not induce the change. Structural analysis using nuclear magnetic resonance confirmed that TtHU and this ssDNA formed a unique structure, which was different from the previously reported structure of HU in complex with dsDNA. Our data suggest that TtHU undergoes a distinct structural change when it associates with ssDNA of a specific sequence and subsequently exerts a yet-to-be-defined function.

14.
Nucleic Acids Res ; 42(6): 3821-32, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24371279

RESUMO

Single-stranded (ss) DNA binding (SSB) proteins play central roles in DNA replication, recombination and repair in all organisms. We previously showed that Escherichia coli (Eco) SSB, a homotetrameric bacterial SSB, undergoes not only rapid ssDNA-binding mode transitions but also one-dimensional diffusion (or migration) while remaining bound to ssDNA. Whereas the majority of bacterial SSB family members function as homotetramers, dimeric SSB proteins were recently discovered in a distinct bacterial lineage of extremophiles, the Thermus-Deinococcus group. Here we show, using single-molecule fluorescence resonance energy transfer (FRET), that homodimeric bacterial SSB from Thermus thermophilus (Tth) is able to diffuse spontaneously along ssDNA over a wide range of salt concentrations (20-500 mM NaCl), and that TthSSB diffusion can help transiently melt the DNA hairpin structures. Furthermore, we show that two TthSSB molecules undergo transitions among different DNA-binding modes while remaining bound to ssDNA. Our results extend our previous observations on homotetrameric SSBs to homodimeric SSBs, indicating that the dynamic features may be shared among different types of SSB proteins. These dynamic features of SSBs may facilitate SSB redistribution and removal on/from ssDNA, and help recruit other SSB-interacting proteins onto ssDNA for subsequent DNA processing in DNA replication, recombination and repair.


Assuntos
Proteínas de Bactérias/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Thermus thermophilus , DNA de Cadeia Simples/química , Difusão , Transferência Ressonante de Energia de Fluorescência , Ligação Proteica
15.
Biochem Biophys Res Commun ; 438(4): 653-9, 2013 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-23933251

RESUMO

Recent developments in in-cell NMR techniques have allowed us to study proteins in detail inside living eukaryotic cells. The lifetime of in-cell NMR samples is however much shorter than that in culture media, presumably because of various stresses as well as the nutrient depletion in the anaerobic environment within the NMR tube. It is well known that Ca(2+)-bursts occur in HeLa cells under various stresses, hence the cytosolic Ca(2+) concentration can be regarded as a good indicator of the healthiness of cells in NMR tubes. In this study, aiming at monitoring the states of proteins resulting from the change of cytosolic Ca(2+) concentration during experiments, human calbindin D9k (P47M+C80) was used as the model protein and cultured HeLa cells as host cells. Time-resolved measurements of 2D (1)H-(15)N SOFAST-HMQC experiments of calbindin D9k (P47M+C80) in HeLa cells showed time-dependent changes in the cross-peak patterns in the spectra. Comparison with in vitro assignments revealed that calbindin D9k (P47M+C80) is initially in the Mg(2+)-bound state, and then gradually converted to the Ca(2+)-bound state. This conversion process initiates after NMR sample preparation. These results showed, for the first time, that cells inside the NMR tube were stressed, presumably because of cell precipitation, the lack of oxygen and nutrients, etc., thereby releasing Ca(2+) into cytosol during the measurements. The results demonstrated that in-cell NMR can monitor the state transitions of stimulated cells through the observation of proteins involved in the intracellular signalling systems. Our method provides a very useful tool for in situ monitoring of the "healthiness" of the cells in various in-cell NMR studies.


Assuntos
Cálcio/metabolismo , Citosol/metabolismo , Ressonância Magnética Nuclear Biomolecular/métodos , Proteína G de Ligação ao Cálcio S100/metabolismo , Estresse Fisiológico , Calbindinas , Células HeLa , Humanos , Magnésio/metabolismo , Modelos Moleculares , Proteína G de Ligação ao Cálcio S100/análise
16.
Methods Mol Biol ; 922: 175-82, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22976186

RESUMO

We describe a procedure to detect protein binding to SSB by polyacrylamide gel electrophoresis under non-denaturing conditions. As an example, we show the interaction of Thermus thermophilus (Tth) SSB with its cognate RecO protein. The interaction is detected as decay of the band corresponding to SSB by addition of RecO. We also demonstrate analysis of the RecO-RecR interaction as another example of this method.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Eletroforese em Gel de Poliacrilamida/métodos , Thermus thermophilus/metabolismo , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Biologia Molecular/métodos , Ligação Proteica , Recombinação Genética , Thermus thermophilus/genética
17.
J Biol Chem ; 286(8): 6720-32, 2011 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-21169364

RESUMO

Displacement of single-stranded DNA (ssDNA)-binding protein (SSB) from ssDNA is necessary for filament formation of RecA on ssDNA to initiate homologous recombination. The interaction between RecO and SSB is considered to be important for SSB displacement; however, the interaction has not been characterized at the atomic level. In this study, to clarify the mechanism underlying SSB displacement from ssDNA upon RecO binding, we examined the interaction between Thermus thermophilus RecO and cognate SSB by NMR analysis. We found that SSB interacts with the C-terminal positively charged region of RecO. Based on this result, we constructed some RecO mutants. The R127A mutant had considerably decreased binding affinity for SSB and could not anneal SSB-coated ssDNAs. Further, the mutant in the RecOR complex prevented the recovery of ssDNA-dependent ATPase activity of RecA from inhibition by SSB. These results indicated that the region surrounding Arg-127 is the binding site of SSB. We also performed NMR analysis using the C-terminal peptide of SSB and found that the acidic region of SSB is involved in the interaction with RecO, as seen in other protein-SSB interactions. Taken together with the findings of previous studies, we propose a model for SSB displacement from ssDNA where the acidic C-terminal region of SSB weakens the ssDNA binding affinity of SSB when the dynamics of the C-terminal region are suppressed by interactions with other proteins, including RecO.


Assuntos
Proteínas de Bactérias/química , DNA Bacteriano/química , DNA de Cadeia Simples/química , Proteínas de Ligação a DNA/química , Thermus thermophilus/química , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Mutação de Sentido Incorreto , Ressonância Magnética Nuclear Biomolecular , Thermus thermophilus/genética , Thermus thermophilus/metabolismo
18.
Anal Biochem ; 391(2): 81-4, 2009 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-19442644

RESUMO

Many techniques in molecular biology require the use of pure nucleic acids in general and circular DNA (plasmid or mitochondrial) in particular. We have developed a method to separate these circular molecules from a mixture containing different species of nucleic acids using rolling circle amplification (RCA). RCA of plasmid or genomic DNA using random hexamers and bacteriophage Phi29 DNA polymerase has become increasingly popular for the amplification of template DNA in DNA sequencing protocols. Recently, we reported that the mutant single-stranded DNA binding protein (SSB) from Thermus thermophilus (TthSSB) HB8 eliminates nonspecific DNA products in RCA reactions. We developed this method for separating circular nucleic acids from a mixture having different species of nucleic acids. Use of the mutant TthSSB resulted in an enhancement of plasmid or mitochondrial DNA content in the amplified product by approximately 500x. The use of mutant TthSSB not only promoted the amplification of circular target DNA over the background but also could be used to enhance the amplification of circular targets over linear targets.


Assuntos
DNA Circular/química , DNA de Cadeia Simples/química , Proteínas de Ligação a DNA/química , Técnicas de Amplificação de Ácido Nucleico/métodos , DNA Circular/análise , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Thermus thermophilus/enzimologia , Thermus thermophilus/metabolismo
19.
Nucleic Acids Res ; 37(10): 3367-76, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19336413

RESUMO

RAD51, an essential eukaryotic DNA recombinase, promotes homologous pairing and strand exchange during homologous recombination and the recombinational repair of double strand breaks. Mutations that up- or down-regulate RAD51 gene expression have been identified in several tumors, suggesting that inappropriate expression of the RAD51 activity may cause tumorigenesis. To identify chemical compounds that affect the RAD51 activity, in the present study, we performed the RAD51-mediated strand exchange assay in the presence of 185 chemical compounds. We found that 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) efficiently inhibited the RAD51-mediated strand exchange. DIDS also inhibited the RAD51-mediated homologous pairing in the absence of RPA. A surface plasmon resonance analysis revealed that DIDS directly binds to RAD51. A gel mobility shift assay showed that DIDS significantly inhibited the DNA-binding activity of RAD51. Therefore, DIDS may bind near the DNA binding site(s) of RAD51 and compete with DNA for RAD51 binding.


Assuntos
Ácido 4,4'-Di-Isotiocianoestilbeno-2,2'-Dissulfônico/farmacologia , Inibidores Enzimáticos/farmacologia , Trifosfato de Adenosina/metabolismo , DNA/metabolismo , Humanos , Rad51 Recombinase/antagonistas & inibidores , Rad51 Recombinase/metabolismo
20.
Nucleic Acids Res ; 36(1): 94-109, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18000001

RESUMO

The regions of single-stranded (ss) DNA that result from DNA damage are immediately coated by the ssDNA-binding protein (SSB). RecF pathway proteins facilitate the displacement of SSB from ssDNA, allowing the RecA protein to form protein filaments on the ssDNA region, which facilitates the process of recombinational DNA repair. In this study, we examined the mechanism of SSB displacement from ssDNA using purified Thermus thermophilus RecF pathway proteins. To date, RecO and RecR are thought to act as the RecOR complex. However, our results indicate that RecO and RecR have distinct functions. We found that RecR binds both RecF and RecO, and that RecO binds RecR, SSB and ssDNA. The electron microscopic studies indicated that SSB is displaced from ssDNA by RecO. In addition, pull-down assays indicated that the displaced SSB still remains indirectly attached to ssDNA through its interaction with RecO in the RecO-ssDNA complex. In the presence of both SSB and RecO, the ssDNA-dependent ATPase activity of RecA was inhibited, but was restored by the addition of RecR. Interestingly, the interaction of RecR with RecO affected the ssDNA-binding properties of RecO. These results suggest a model of SSB displacement from the ssDNA by RecF pathway proteins.


Assuntos
Proteínas de Bactérias/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Thermus thermophilus/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/isolamento & purificação , Ligação Competitiva , DNA de Cadeia Simples/ultraestrutura , Proteínas de Ligação a DNA/isolamento & purificação , Proteínas de Ligação a DNA/ultraestrutura , Recombinases Rec A/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...