Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(38): 34575-34582, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37779985

RESUMO

A new macrocyclic ligand was synthesized by a reaction between diethylenetriaminepentaacetic (DTPA) dianhydride and trans-1,4-diaminocyclohexane, and the Gd(III) and Yb(III) complexes were prepared. The compounds were characterized by spectroscopic methods. Structural calculation by DFT shows that the amide linkages are arranged in such a way that a conformational strain is minimized in the macrocyclic frame. The coordination modes of the ligand and water in the metal complexes were also determined by DFT. The longitudinal relaxation time T1 was measured for aqueous solutions of the Gd(III) complex. The T1 relaxivity arises from the structural feature that a water molecule coordinated to the paramagnetic metal is surrounded by a large open space, through which the exchange of water occurs readily to shorten the relaxation time of water in the entire region, as a result of the chelate conformation defined strictly by the amide groups and the cyclohexane ring.

2.
ACS Omega ; 6(14): 9381-9390, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33869918

RESUMO

Two simple chemosensors with urea (L1) and thiourea (L2) groups were synthesized and studied by different spectroscopic techniques. Both receptors can sense acetate (Ac-), dihydrogen phosphate (H2PO4 -), and fluoride (F-) anions, accompanied by changes in UV-vis and 1H NMR spectra, and an optical response is observed as a color change of the solutions due to deprotonation and hydrogen-bonding processes. Also, L1 and L2 were supported on TentaGel resins (R1 and R2), and their fluoride-sensing properties in DMSO and water solutions were studied. Interestingly, R2 can sense fluoride ions in sample solutions of 100% water.

3.
Carbohydr Res ; 490: 107952, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32114014

RESUMO

The major anomer of non-protonated neutral d-glucosamine GlcN0 is the ß-form, while the α-anomer is dominant for protonated cationic glucosamine GlcNH+. The present work confirmed correlation between the anomerization and the protonation by simultaneous determination of signal intensity and chemical shift in pD-variation 1H NMR, and formulated the equilibrium constants between subspecies α-GlcN0, ß-GlcN0, α-GlcND+, and ß-GlcND+ to interpret the correlation. The individual anomerization constants, Kan = [ßGlcN]/[αGlcN] and KanD = [ßGlcND+]/[αGlcND+], are linked to each other through the relation KDα∙KanD = KDß∙Kan with the deuteration constants KDα and KDß of the anomers. The anomer populations are stimulated by OD- and D+ ions in the dose-response form. The acidic deuteron in α-GlcND+ is populated mostly at the nitrogen atom, whereas the population in ß-GlcND+ is comparable at nitrogen and anomeric oxygen; this difference is consistent with the basicity of the nitrogen and the anomerization process of glucosamine.


Assuntos
Glucosamina/química , Configuração de Carboidratos , Hidrogenação , Cinética , Nitrogênio/química , Espectroscopia de Prótons por Ressonância Magnética
4.
Molecules ; 24(19)2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31581425

RESUMO

The Cu2+, Mn2+, and Fe3+ complexes of a 14 membered macrocycle were synthesized and their antioxidant capacities were evaluated against ABTS and DPPH radicals, with the objective of collecting insights into the biomimetic role of the central metal ions. The macrocycle, abbreviated as H2L14, is a derivative of EDTA cyclized with 1,4-diamine, and the moderately flexible macrocyclic frame permits the formation of [ML14·H2O] chelates with octahedral coordination geometries common among the metal ions. The metal complexes were characterized by electrospray-ionization mass spectrometry, Fourier transform infrared spectroscopy, and Raman and X-ray photoelectron spectroscopic methods, as well as thermogravimetric analysis; the octahedral coordination geometries with water coordination were optimized by DFT calculations. The antioxidant assays showed that [FeL14·H2O]+ was able to scavenge synthetic radicals with moderate capacity, whereas the other metal chelates did not show significant activity. The Raman spectrum of DPPH in solution suggests that interaction was operative between the Fe3+ chelate and the radical so as to cause scavenging capability. The nature of the central metal ions is a controlling factor for antioxidant capacity, as every metal chelate carries the same coordination geometry.


Assuntos
Antioxidantes/síntese química , Complexos de Coordenação/síntese química , Ácido Edético/química , Compostos Macrocíclicos/síntese química , Antioxidantes/química , Complexos de Coordenação/química , Cobre/química , Teoria da Densidade Funcional , Ferro/química , Compostos Macrocíclicos/química , Manganês/química , Estrutura Molecular , Espectrometria de Massas por Ionização por Electrospray , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria
5.
ACS Omega ; 4(27): 22487-22496, 2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31909331

RESUMO

With the objective of studying the conformational and macrocyclic effects of selected metal chelates on their peroxidase activities, Cu2+ and Fe3+ complexes were synthesized with a macrocyclic derivative of ethylenediaminetetraacetic acid and o-phenylenediamine (abbreviated as edtaodH2) and its new open-chain analogue (edtabzH2). The Fe3+ complex of edtaodH2 has a peroxidase-like activity, whereas the complex of edtabzH2 does not. The X-ray study of the former shows the formation of a dimeric molecule {[Fe(edtaod)]2O} in which each metal with an octahedral coordination is overposed over the macrocyclic cavity, as a result of rigid macrocyclic frame, to form an Fe-O-Fe bridge; the exposure of the central metal to the environment facilitates the capture of oxygen to drive the biomimetic activity. The peroxidase-inactive Fe3+ complex consists of a mononuclear complex ion [Fe(edtabz)(H2O)]+, the metal ion of which is suited in a distorted pentagonal bipyramid to be protected from environmental oxygen. The copper(II) complexes, which have mononuclear structures with high thermodynamic stability compared with the iron(III) complexes, show no peroxidase activity. The steric effects play a fundamental role in the biomimetic activity.

6.
Carbohydr Res ; 452: 6-16, 2017 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-28992455

RESUMO

Complex formation of D-glucosamine (Gl) and N-acetyl-D-glucosamine (AGl) with capsaicin (Cp) were studied by 1H NMR titrations in H2O-d2 and DMSO-d6; capsaicin is the major bioactive component of chili peppers. Every titration curve has been interpreted by formulating a suitable model for the reaction equilibrium, to elucidate intermolecular interactions. In DMSO, glucosamine cations associate with each other to yield linear aggregates, and undergo pseudo-1:1-complexation with capsaicin, the formation constant being ca. 30 M-1. N-Acetylglucosamine, without self-association, forms a 2:1-complex AGl2Cp with the stability of ca. 70 M-2. These complexations are achieved by intermolecular hydrogen bonds. In D2O, glucosamine undergoes reversible protonation equilibrium between Gl0 and GlH+ with the logarithmic protonation constants log KD = 8.63 for α-glucosamine and 8.20 for ß-isomer. Both anomeric isomers of deprotonated glucosamine form Gl0Cp-type complexes of capsaicin, in a competitive manner, with a formation constant of 1040 M-1 for the α-glucosamine complex and 830 M-1 for the ß-complex; the anomeric carbons result in the difference in thermodynamic stability. The reactant molecules are closed up by the solvent-exclusion effect and/or the van der Waals interaction; the resulting pair is stabilized by intermolecular hydrogen bonding within a local water-free space between the component molecules. By contrast, neither protonated glucosamine (GlH+) nor N-acetylglucosamine yields a capsaicin complex with the definite stoichiometry. The monosaccharides recognize capsaicin under only a controlled condition; the same phenomena are predicted for biological systems and nanocarriers based on polysaccharides such as chitosan.


Assuntos
Acetilglucosamina/química , Capsaicina/química , Glucosamina/química , Espectroscopia de Prótons por Ressonância Magnética/métodos , Termodinâmica
7.
J Inorg Biochem ; 99(2): 584-8, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15621293

RESUMO

Metal-binding sites in epigallocatechin gallate (egcg) were identified by measuring (1)H nuclear spin relaxation time T(1) under the coexistence of paramagnetic Mn(2+). The T(1) of the proton of gallate ring (D-ring) was shortened by the paramagnetic ion to a greater extent than the proton in gallocatechin ring (B-ring); the D-ring OH groups occupy the first coordination sphere around a metal ion to form a diolate chelate ring, while B-ring OH groups have a weak interaction with the metal ion. Comparison of changes in T(1) of egcg and epigallocatechin (egc) indicates that the gallate ring has a higher coordination capability than that of the gallocatechin ring so that the former plays a predominant role in the complex formation of egcg.


Assuntos
Catequina/análogos & derivados , Catequina/química , Manganês/química , Sítios de Ligação , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Extratos Vegetais/química , Chá/química
8.
J Inorg Biochem ; 88(1): 7-13, 2002 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-11750019

RESUMO

The acid dissociation of (-)-epigallocatechin gallate (abbreviated as egcg) and its complexation with Al(3+) were studied by potentiometric titrations, and were compared with those of (-)-epicatechin (ec) and (-)-epigallocatechin (egc). In Al(3+)-ec and Al(3+)-egc reaction systems, [Al(LH(-2))](+), [Al(LH(-2))(OH)](0), and [Al(LH(-2))(2)](-) are formed, as reported for Al(3+)-catechin (c). Reactions between Al(3+) and egcg at pH <4.1 yield AlLH(-2) and AlLH(-3) species. The 1H NMR studies have shown that two hydroxyl groups of the gallate (D) ring are deprotonated and coordinated to an Al(3+) ion in [Al(egcgH(-2))](+). The AlLH(-3) species of egcg is supposed to be formulated as [Al(egcgH(-3))](0) in which one hydroxyl group of the pyrogallol (B) ring and two hydroxyl groups of the D ring are deprotonated; an Al(3+) ion is coordinated to two oxygen atoms of the D ring and one oxygen atom from the B ring of the neighboring chelate molecule, resulting in the formation of a polymeric structure. In the Al(3+) complex of egcg, the gallate group forms major coordinate bonds and results in solution properties that are different from those of ec, egc and c which have no gallate group.


Assuntos
Alumínio/química , Catequina/química , Chá/química , Antineoplásicos/química , Catequina/análogos & derivados , Eletroquímica , Ligantes , Ressonância Magnética Nuclear Biomolecular , Compostos Organometálicos/química , Titulometria
9.
Inorg Chem ; 37(16): 4070-4075, 1998 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-11670526

RESUMO

A chelating cyclophane has been synthesized by cyclocondensation of two ethylenediaminetetraacetic (EDTA) units with two p-phenylenediamine units: the resulting cyclophane is 2,9,18,25-tetraoxo-4,7,20,23-tetrakis(carboxymethyl)-1,4,7,10,17,20,23,26-octaaza[10.10]paracyclophane, abbreviated as (bis-edtapdn)H(4). Cyclocondensation of two EDTA and two 1,5-diaminonaphthalene units has given the naphthalenophane, 2,9,22,29-tetraoxo-4,7,24,27-tetrakis(carboxymethyl)-1,4,7,10,21,24,27,30-octaaza[10.10](1,5)naphthalenophane, (bis-edtanap)H(4). Studies of electronic and EPR spectra have been carried out on the binuclear Cu(2+) complexes of these new ligands and of related chelating cyclophanes, 2,9,25,32-tetraoxo-4,7,27,30-tetrakis(carboxymethyl)-1,4,7,10,24,27,30,33-octaaza[10.1.10.1]paracyclophane, abbreviated as (bis-edtabpm)H(4), and 2,9,25,32-tetraoxo-4,7,27,30-tetrakis(carboxymethyl)-1,4,7,10,24,27,30,33-octaaza-17,40-dioxa[10.1.10.1]paracyclophane, abbreviated as (bis-edtabpe)H(4). Common features of these chelating cyclophanes are as follows: (1) amino, amide, and pendant carboxymethyl donor groups are substituents in the cyclophane ring, and (2) the amide groups are directly bound to the aromatic groups. These ligands formed neutral binuclear Cu(2+) chelates [Cu(2)L](0) that are water-insoluble. In alkaline solutions, these Cu(2+) complexes were converted to anionic chelates [Cu(2)(LH(-)(4))](4)(-) in which deprotonated amide nitrogens coordinated Cu(2+) ions. These anionic metal chelates of (bis-edtapdn)H(4), (bis-edtabpm)H(4), and (bis-edtabpe)H(4) exhibited three pi-pi transition bands in the spectral range 240-340 nm, in contrast to the uncoordinated cyclophanes, which showed a single band in this spectral range. The unusual pi-pi transition spectra of the [Cu(2)(LH(-)(4))](4)(-) complexes originate from the combined effect of metal-ligand charge transfer and proximity of the pi systems. The absorption and emission spectra of (bis-edtanap)H(4) were also influenced by coordination with copper. The EPR spectrum of [Cu(2)(bis-edtanapH(-)(4))](4)(-) in a methanol glass matrix showed a hyperfine structure due to the spin exchange between two Cu(2+) ions. These unusual spectral and magnetic properties arise from the strong coordination between Cu(2+) ions and deprotonated amide nitrogens that are bound to the pi systems.

10.
Inorg Chem ; 36(11): 2335-2340, 1997 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-11669869

RESUMO

A condensation reaction between ethylenediaminetetraacetic dianhydride and p-xylenediamine gave a new chelating cyclophane, 3,10,21,28-tetraoxo-5,8,23,26-tetrakis(carboxymethyl)-2,5,8,11,20,23,26,29-octaaza[12.12]paracyclophane, abbreviated as (32edtaxan)H(4), which has three types of electron-donor groups, i.e., amine, carboxylate, and amide groups. The formation of the cyclophane has been confirmed by a single-crystal X-ray analysis of its Zn(2+) complex, [Zn(2)(32edtaxan)].7.5H(2)O, which crystallized in the monoclinic space group P2(1)/c with a = 19.818(1) Å, b = 13.169(1) Å, c = 18.134(1) Å, beta = 104.491(6) degrees, and Z = 4. Each cyclophane molecule coordinates two Zn(2+) ions and results in the formation of a binuclear chelate molecule. The coordination geometry around each metal ion is distorted octahedral, the donor atoms being two carboxylate oxygen atoms, two amine nitrogen atoms, and two amide oxygen atoms. The new cyclophane exhibited a well-defined fluorescence band at 290 nm with 210 nm excitation. The emission intensity was markedly increased in the Zn(2+) complex, in which the coordination of Zn(2+) ions increases the rigidity of the cyclophane leading to a high fluorescence quantum yield. When the cyclophane was coordinated to Cu(2+) ions, the molar absorptivity of a pi-pi transition band observed at 260 nm was increased by a factor of about 10. Such a large spectral change was not observed for the Zn(2+) and Ni(2+) complexes. In the Cu(2+) complex, the two phenyl rings of the cyclophane are expected to be brought closer, as a result of the coordination of deprotonated amide nitrogens to the central metal ion. This allosterism via ring contraction is responsible for the novel behavior of the absorption spectrum. The emission band of the cyclophane was weakened by coordination of copper and nickel as a result of fluorescence quenching caused by a photo-induced electron transfer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...