Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 11513, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460786

RESUMO

We aimed to investigate the impact of glutathione trisulfide (GSSSG) on lipopolysaccharide (LPS)-induced inflammation in retinal glia. Inflammatory responses in mouse-derived glial cells and Wistar rat retinas were stimulated with administration of LPS. Cell survival and proinflammatory cytokine production were examined using the Calcein-AM assay, and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA), respectively. Retinal microglia were visualized with immunohistochemistry for Iba1. Administration of LPS (10 µg/mL) or GSSSG (less than 100 µM) did not affect survival of cultured primary Müller cells and established microglial cells (BV-2). RT-qPCR and ELISA indicated that GSSSG inhibited LPS-induced gene upregulation and protein secretion of proinflammatory cytokines in these glial cells and rat retinas. GSSSG inhibited LPS-induced activation of TGF-ß-activated kinase 1 (TAK1), which is an upstream kinase of NF-κB, in BV-2 cells. Finally, in vivo experiments indicated that intravitreal administration of GSSSG but not its relative glutathione disulfide (GSSG) inhibited LPS (500 ng)-induced accumulation of Iba1-immunopositive microglia in rat retinas. Taken together, GSSSG has the potential to prevent pathogenesis of inflammation-associated ocular diseases by inhibiting proinflammatory cytokine expression in retinal glial cells.


Assuntos
Inflamação , Lipopolissacarídeos , Camundongos , Ratos , Animais , Lipopolissacarídeos/metabolismo , Ratos Wistar , Inflamação/patologia , Neuroglia/metabolismo , Citocinas/metabolismo , NF-kappa B/metabolismo , Microglia/metabolismo
2.
Exp Eye Res ; 226: 109314, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36400285

RESUMO

Glaucoma is one of the most common causes of blindness worldwide. It is thought to be a multifactorial disease with underlying mechanisms that include mitochondrial dysfunction and oxidative stress. Here, we used NF-E2 related factor 2 (Nrf2) knockout (KO) mice, which are vulnerable to oxidative stress, to examine a neuroprotective effect against oxidative stress due to rotenone, a mitochondrial complex I inhibitor. Wild-type (WT) and Nrf2 KO mice received an oral solution of rotenone for 30 days. We then extracted the retinas and performed immunohistochemistry and quantitative RT-PCR. We also prepared a primary Müller cell culture of samples from each mouse, added 30 µM rotenone, and then measured cell viability, cytotoxicity and CellRox absorbance. We also examined gene expression. We found a significant increase in the number of 8-OHdG-positive retinal ganglion cells (RGCs) after rotenone administration in both the WT and Nrf2 KO mice. There was no difference in the number of RNA-binding protein with multiple splicing (RBPMS)-positive RGCs in the WT and Nrf2 KO mice, but Nrf2 KO mice that were given rotenone had significantly less retinal gene expression of RBPMS than Nrf2 KO mice given a control. Moreover, there was significantly higher mRNA gene expression of vimentin and glial fibrillary acidic protein (GFAP) in Nrf2 KO mice that received rotenone than WT mice that received rotenone. A statistical analysis of the in vitro experiment showed that cell viability was lower, cytotoxicity was higher, and oxidative stress was higher in the Müller cells of the Nrf2 KO mice than the WT mice. Finally, brain-derived neurotrophic factor (BDNF) and basic fibroblast growth factor (bFGF) were significantly higher in the Müller cells of the Nrf2 KO mice than the WT mice. These findings suggest that in Nrf2 KO mice under oxidative stress caused by rotenone, temporary neurotrophic factors are secreted from the Müller cells, conferring neuroprotection in these cells.


Assuntos
Fator 2 Relacionado a NF-E2 , Rotenona , Camundongos , Animais , Camundongos Knockout , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Rotenona/toxicidade , Rotenona/metabolismo , Fatores de Crescimento Neural/metabolismo , Estresse Oxidativo , Neuroglia/metabolismo , Camundongos Endogâmicos C57BL
3.
Ocul Immunol Inflamm ; 30(4): 789-800, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-33215957

RESUMO

We investigated the effects of glutathione trisulfide (GSSSG) on lipopolysaccharide (LPS)-induced inflammatory gene expression in immortalized ARPE-19, and primary human and mouse retinal pigment epithelial (RPE) cells. Sulfane sulfur molecules were significantly increased in GSSSG-treated ARPE-19 cells. GSSSG prevented the LPS-induced upregulation of interleukin (IL)-1ß, IL-6, and C-C motif chemokine ligand 2 (CCL2) in ARPE-19/primary RPE cells. Moreover, GSSSG prevented the activation of the nuclear factor-kappa B p65 subunit, and promoted the activation of extracellular signal-regulated kinase 1/2 (ERK1/2) in LPS-treated ARPE-19 cells. ERK1/2 inhibition prevented the GSSSG-mediated inhibition of LPS-induced IL-6 and CCL2 upregulation. Additionally, ERK1/2 activation prevented the upregulation of these genes in the absence of GSSSG. Knockdown of HMOX1 or NRF2, known as anti-oxidative genes, did not affect the activity of GSSSG in the context of LPS stimulation. These findings suggest that GSSSG attenuates LPS-induced inflammatory gene expression via ERK signaling hyperactivation, independently of the NRF2/HMOX1 pathway.


Assuntos
Lipopolissacarídeos , Epitélio Pigmentado da Retina , Animais , Células Epiteliais/metabolismo , Expressão Gênica , Glutationa/análogos & derivados , Humanos , Inflamação/genética , Inflamação/prevenção & controle , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/farmacologia , Pigmentos da Retina/efeitos adversos , Pigmentos da Retina/metabolismo , Enxofre
4.
Clin Ophthalmol ; 15: 2293-2300, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34113073

RESUMO

PURPOSE: Oxidative stress may be a risk factor for glaucoma, and many previous reports have suggested that antioxidants could be a promising treatment. Here, we investigated the effects of a novel supplement containing three food-derived antioxidants (hesperidin, crocetin, and Tamarindus indica) on markers of oxidative stress in patients with glaucoma. PATIENTS AND METHODS: This study had a prospective, single arm design. Thirty Japanese glaucoma patients were recruited and given 4 tablets with ample water twice a day for 8 weeks. The treatment was stopped, and the subjects were followed for an additional 8 weeks. We measured biological antioxidant potential (BAP) with a free radical analyzer. We also measured urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG; a marker of oxidative DNA damage). Clinical laboratory data were measured in venous blood samples. Clinical parameters were also recorded. Comparisons used a one-way analysis of variance (ANOVA) followed by Dunnett's test. RESULTS: The 8-OHdG level was not reduced. We also divided the patients into groups with high or low oxidative stress. In patients with relatively high oxidative stress, the 8-OHdG level was significantly reduced at weeks 4, 8, 12, and 16 (P < 0.001, P < 0.01, P < 0.01, P < 0.01), and BAP was significantly elevated at weeks 8 and 12 (P = 0.03, P = 0.04). In patients with relatively low oxidative stress, the 8-OHdG level was not significantly reduced during supplement intake but was significantly elevated at weeks 12 and 16 (P =0.03, P = 0.04), while BAP was not significantly elevated. CONCLUSION: An 8-week oral course of antioxidant supplementation was effective in patients with a high oxidative stress level. Dietary supplementation could hold promise in the treatment of systemic oxidative stress-related diseases.

5.
Sci Rep ; 11(1): 11159, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34045544

RESUMO

Administration of the mitochondrial complex I inhibitor rotenone provides an excellent model to study the pathomechanism of oxidative stress-related neural degeneration diseases. In this study, we examined the glial roles in retinal cell survival and degeneration under the rotenone-induced oxidative stress condition. Mouse-derived Müller, microglial (BV-2), and dissociated retinal cells were used for in vitro experiments. Gene expression levels and cell viability were determined using quantitative reverse transcription-polymerase chain reaction and the alamarBlue assay, respectively. Conditioned media were prepared by stimulating glial cells with rotenone. Retinal ganglion cells (RGCs) and inner nuclear layer (INL) were visualized on rat retinal sections by immunohistochemistry and eosin/hematoxylin, respectively. Rotenone dose-dependently induced glial cell death. Treatment with rotenone or rotenone-stimulated glial cell-conditioned media altered gene expression of growth factors and inflammatory cytokines in glial cells. The viability of dissociated retinal cells significantly increased upon culturing in media conditioned with rotenone-stimulated or Müller cell-conditioned media-stimulated BV-2 cells. Furthermore, intravitreal neurotrophin-5 administration prevented the rotenone-induced reduction of RGC number and INL thickness in rats. Thus, glial cells exerted both positive and negative effects on retinal cell survival in rotenone-induced neural degeneration via altered expression of growth factors, especially upregulation of microglia-derived Ntf5, and proinflammatory cytokines.


Assuntos
Sobrevivência Celular/fisiologia , Células Ependimogliais/patologia , Microglia/patologia , Degeneração Neural/patologia , Células Ganglionares da Retina/patologia , Animais , Meios de Cultivo Condicionados , Citocinas/metabolismo , Células Ependimogliais/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Microglia/metabolismo , Degeneração Neural/induzido quimicamente , Degeneração Neural/metabolismo , Estresse Oxidativo/fisiologia , Ratos , Células Ganglionares da Retina/metabolismo , Rotenona
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...