Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 372(6537): 52-56, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33707221

RESUMO

Eukaryotic transcription requires the assembly of a multisubunit preinitiation complex (PIC) composed of RNA polymerase II (Pol II) and the general transcription factors. The coactivator Mediator is recruited by transcription factors, facilitates the assembly of the PIC, and stimulates phosphorylation of the Pol II C-terminal domain (CTD) by the TFIIH subunit CDK7. Here, we present the cryo-electron microscopy structure of the human Mediator-bound PIC at a resolution below 4 angstroms. Transcription factor binding sites within Mediator are primarily flexibly tethered to the tail module. CDK7 is stabilized by multiple contacts with Mediator. Two binding sites exist for the Pol II CTD, one between the head and middle modules of Mediator and the other in the active site of CDK7, providing structural evidence for Pol II CTD phosphorylation within the Mediator-bound PIC.


Assuntos
Complexo Mediador/química , RNA Polimerase II/química , Fatores Genéricos de Transcrição/química , Iniciação da Transcrição Genética , Sítios de Ligação , Domínio Catalítico , Microscopia Crioeletrônica , Quinases Ciclina-Dependentes/química , Quinases Ciclina-Dependentes/metabolismo , Humanos , Complexo Mediador/metabolismo , Modelos Moleculares , Fosforilação , Ligação Proteica , Domínios Proteicos , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Fator de Transcrição TFIIH/química , Fator de Transcrição TFIIH/metabolismo , Fatores Genéricos de Transcrição/metabolismo , Quinase Ativadora de Quinase Dependente de Ciclina
2.
Mol Biol Cell ; 11(11): 4033-49, 2000 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11071925

RESUMO

Ste5 is essential for pheromone response and binds components of a mitogen-activated protein kinase (MAPK) cascade: Ste11 (MEKK), Ste7 (MEK), and Fus3 (MAPK). Pheromone stimulation releases Gbetagamma (Ste4-Ste18), which recruits Ste5 and Ste20 (p21-activated kinase) to the plasma membrane, activating the MAPK cascade. A RING-H2 domain in Ste5 (residues 177-229) negatively regulates Ste5 function and mediates its interaction with Gbetagamma. Ste5(C177A C180A), carrying a mutated RING-H2 domain, cannot complement a ste5Delta mutation, yet supports mating even in ste4Delta ste5Delta cells when artificially dimerized by fusion to glutathione S-transferase (GST). In contrast, wild-type Ste5 fused to GST permits mating of ste5Delta cells, but does not allow mating of ste4Delta ste5Delta cells. This differential behavior provided the basis of a genetic selection for STE5 gain-of-function mutations. MATa ste4Delta ste5Delta cells expressing Ste5-GST were mutagenized chemically and plasmids conferring the capacity to mate were selected. Three independent single-substitution mutations were isolated. These constitutive STE5 alleles induce cell cycle arrest, transcriptional activation, and morphological changes normally triggered by pheromone, even when Gbetagamma is absent. The first, Ste5(C226Y), alters the seventh conserved position in the RING-H2 motif, confirming that perturbation of this domain constitutively activates Ste5 function. The second, Ste5(P44L), lies upstream of a basic segment, whereas the third, Ste5(S770K), is situated within an acidic segment in a region that contacts Ste7. None of the mutations increased the affinity of Ste5 for Ste11, Ste7, or Fus3. However, the positions of these novel-activating mutations suggested that, in normal Ste5, the N terminus may interact with the C terminus. Indeed, in vitro, GST-Ste5(1-518) was able to associate specifically with radiolabeled Ste5(520-917). Furthermore, both the P44L and S770K mutations enhanced binding of full-length Ste5 to GST-Ste5(1-518), whereas they did not affect Ste5 dimerization. Thus, binding of Gbetagamma to the RING-H2 domain may induce a conformational change that promotes association of the N- and C-terminal ends of Ste5, stimulating activation of the MAPK cascade by optimizing orientation of the bound kinases and/or by increasing their accessibility to Ste20-dependent phosphorylation (or both). In accord with this model, the novel Ste5 mutants copurified with Ste7 and Fus3 in their activated state and their activation required Ste20.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Transporte , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Subunidades beta da Proteína de Ligação ao GTP , Subunidades gama da Proteína de Ligação ao GTP , Sistema de Sinalização das MAP Quinases , Feromônios/fisiologia , Proteínas de Saccharomyces cerevisiae , Leveduras/fisiologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Análise Mutacional de DNA , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , MAP Quinase Quinase Quinases , Dados de Sequência Molecular , Mutagênese , Conformação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína
3.
Mol Cell Biol ; 19(10): 7123-37, 1999 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-10490648

RESUMO

Successful mitosis requires faithful DNA replication, spindle assembly, chromosome segregation, and cell division. In the budding yeast Saccharomyces cerevisiae, the G(2)-to-M transition requires activation of Clb-bound forms of the protein kinase, Cdc28. These complexes are held in an inactive state via phosphorylation of Tyr19 in the ATP-binding loop of Cdc28 by the Swe1 protein kinase. The HSL1 and HSL7 gene products act as negative regulators of Swe1. Hsl1 is a large (1,518-residue) protein kinase with an N-terminal catalytic domain and a very long C-terminal extension. Hsl1 localizes to the incipient site of cytokinesis in the bud neck in a septin-dependent manner; however, the function of Hsl7 was not previously known. Using both indirect immunofluorescence with anti-Hsl7 antibodies and a fusion of Hsl7 to green fluorescent protein, we found that Hsl7 also localizes to the bud neck, congruent with the septin ring that faces the daughter cell. Both Swe1 and a segment of the C terminus of Hsl1 (which has no sequence counterpart in two Hsl1-related protein kinases, Gin4 and Kcc4) were identified as gene products that interact with Hsl7 in a two-hybrid screen of a random S. cerevisiae cDNA library. Hsl7 plus Swe1 and Hsl7 plus Hsl1 can be coimmunoprecipitated from extracts of cells overexpressing these proteins, confirming that Hsl7 physically associates with both partners. Also consistent with the two-hybrid results, Hsl7 coimmunoprecipitates with full-length Hsl1 less efficiently than with a C-terminal fragment of Hsl1. Moreover, Hsl7 does not localize to the bud neck in an hsl1Delta mutant, whereas Hsl1 is localized normally in an hsl7Delta mutant. Phosphorylation and ubiquitinylation of Swe1, preludes to its destruction, are severely reduced in cells lacking either Hsl1 or Hsl7 (or both), as judged by an electrophoretic mobility shift assay. Collectively, these data suggest that formation of the septin rings provides sites for docking Hsl1, exposing its C terminus and thereby permitting recruitment of Hsl7. Hsl7, in turn, presents its cargo of bound Swe1, allowing phosphorylation by Hsl1. Thus, Hsl1 and Hsl7 promote proper timing of cell cycle progression by coupling septin ring assembly to alleviation of Swe1-dependent inhibition of Cdc28. Furthermore, like septins and Hsl1, homologs of Hsl7 are found in fission yeast, flies, worms, and humans, suggesting that its function in this control mechanism may be conserved in all eukaryotes.


Assuntos
Proteína Quinase CDC28 de Saccharomyces cerevisiae/metabolismo , Divisão Celular/fisiologia , Proteínas Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/citologia , Proteínas de Ciclo Celular , Sistema Livre de Células , Quinases Ciclina-Dependentes/metabolismo , Fase G2/fisiologia , Mitose/fisiologia , Modelos Biológicos , Fosforilação , Ligação Proteica , Proteína-Arginina N-Metiltransferases , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais , Técnicas do Sistema de Duplo-Híbrido , Tirosina/metabolismo
4.
J Biol Chem ; 270(25): 15187-93, 1995 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-7541038

RESUMO

YY1 is a zinc finger transcription factor with unusual structural and functional features. In a yeast two-hybrid screen, two cellular proteins, cyclophilin A (CyPA) and FK506-binding protein 12 (FKBP12), interacted with YY1. These interactions are specific and also occur in mammalian cells. Cyclosporin A and FK506 efficiently disrupt the YY1-CyPA and YY1-FKBP12 interactions. Overexpression of human CyPA and FKBP12 have different effects on YY1-regulated transcription with these effects being promoter-dependent. These results suggest that immunophilins may be mediators in the functional role of YY1.


Assuntos
Isomerases de Aminoácido/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Choque Térmico/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Cloranfenicol O-Acetiltransferase/metabolismo , Ciclosporina/farmacologia , Endodesoxirribonucleases/metabolismo , Fatores de Ligação de DNA Eritroide Específicos , Células HeLa , Humanos , Peptidilprolil Isomerase , Regiões Promotoras Genéticas , Proteínas Recombinantes de Fusão/metabolismo , TATA Box , Tacrolimo/farmacologia , Proteínas de Ligação a Tacrolimo , Transcrição Gênica/efeitos dos fármacos , Transfecção , Fator de Transcrição YY1 , Dedos de Zinco
5.
Dev Biol ; 166(2): 363-79, 1994 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-7813763

RESUMO

Extracellular signals can affect the rate of proliferation and the state of differentiation of eukaryotic cells. Signal transduction pathways have evolved to detect these signals at the plasma membrane, transmit them through the cytoplasm and into the nucleus, and thereby generate the appropriate changes in metabolism and transcription. Much attention has been focused recently on regulatory pathways of this sort that lead to activation of a family of protein kinases known as the mitogen- or messenger-activated, or extracellular signal-regulated protein kinases (MAPKs or ERKs) because this particular class of enzyme is highly conserved among eukaryotes, as is documented here and in the accompanying reviews in this issue. The mating pheromone response pathway in a unicellular microbe, the budding yeast Saccharomyces cerevisiae, is perhaps the best understood multicomponent signaling pathway known in any eukaryotic organism, especially at the genetic level. Furthermore, structural homologs and functional analogs of the components of the yeast pheromone response pathway are recapitulated in the signaling systems present in multicellular eukaryotes. This article emphasizes recent findings and common molecular themes for understanding the organization and regulation of MAPK-dependent signaling cascades that have emerged from biochemical and genetic analysis of the mating pheromone response pathway in yeast.


Assuntos
Ciclo Celular , Proteínas de Ligação ao GTP/fisiologia , Peptídeos/fisiologia , Proteínas Quinases/fisiologia , Receptores de Peptídeos/fisiologia , Saccharomyces cerevisiae/fisiologia , Fatores de Transcrição , Regulação da Expressão Gênica , Genes Fúngicos , Fator de Acasalamento , Receptores de Fator de Acasalamento , Transdução de Sinais
6.
J Biol Chem ; 269(9): 6506-10, 1994 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-8120001

RESUMO

Previous studies have shown that the transcription factor YY1 can both activate and repress transcription of many mammalian genes (reviewed by Hahn (Hahn, S. (1992) Curr. Biol. 2, 152-154)). Given the diverse effects of the YY1 protein, it seems likely that its function depends on interaction with other cellular factors. We have used the yeast two-hybrid system to isolate mouse cDNAs encoding proteins capable of directly binding to YY1. Sequence analysis of one clone revealed it had an open reading frame with the potential to code for a protein nearly identical to the previously published mouse nucleolar phosphoprotein B23. The YY1.B23 complex is specific, and occurs in vivo and in vitro. Overexpression of the B23 protein can reverse the transcriptional repression exerted by YY1. These results suggest a role for a nucleolar protein as a component in transcription and provide a possible mechanism for transcriptional regulation by YY1.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Animais , Nucléolo Celular/metabolismo , Clonagem Molecular , DNA Complementar/isolamento & purificação , DNA Complementar/metabolismo , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/isolamento & purificação , Fatores de Ligação de DNA Eritroide Específicos , Escherichia coli/metabolismo , Células HeLa , Humanos , Camundongos , Proteínas Nucleares/biossíntese , Proteínas Nucleares/isolamento & purificação , Nucleofosmina , Ligação Proteica , Biossíntese de Proteínas , Saccharomyces cerevisiae , Fatores de Transcrição/biossíntese , Fatores de Transcrição/isolamento & purificação , Transfecção , Fator de Transcrição YY1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA