Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
PLoS Negl Trop Dis ; 17(3): e0010905, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36961865

RESUMO

BACKGROUND: Assessment of cellular immune responses by combining intracellular cytokine staining and immunophenotyping using flow cytometry enables the simultaneous measurement of T cell phenotype and effector function in response to pathogens and vaccines. The use of whole blood samples rather than peripheral blood mononuclear cells avoids both the need for immediate processing and loss of functional antigen presenting cells due to processing and cryopreservation. Using whole blood provides the possibility to stimulate peripheral T cells in situ, and is more suitable for studies where sample volume is limited, such as those involving children, the elderly and critically ill patients. The aim of this study was to provide a robust tool for the assessment of antigen-specific T cell responses in a field site setting with limited resources. METHODOLOGY/PRINCIPLE FINDINGS: We optimised a flow cytometry-based whole blood intracellular cytokine assay (WBA) with respect to duration of antigen stimulation and intracellular protein retention time. We demonstrate the ability of the WBA to capture polyfunctional T cell responses in the context of acute scrub typhus infection, by measuring IFN-γ, TNF and IL-2 in CD4+ and CD8+ T cells in response to the causative agent O. tsutsugamushi (OT). Using an optimised OT antigen preparation, we demonstrate the presence of polyfunctional antigen-specific memory CD4+ T cells in the blood of scrub typhus patients. CONCLUSIONS/SIGNIFICANCE: In conclusion, this flow cytometry-based WBA is well-suited for use at field study sites, and enables the assessment of polyfunctional T cell responses to infectious agents and vaccines through delineation of antigen-specific cytokine secretion at the single cell level.


Assuntos
Tifo por Ácaros , Humanos , Linfócitos T CD4-Positivos , Leucócitos Mononucleares , Linfócitos T CD8-Positivos , Citocinas
3.
PLoS Negl Trop Dis ; 16(8): e0010611, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35925895

RESUMO

BACKGROUND: Scrub typhus is a vector-borne febrile illness caused by Orientia tsutsugamushi transmitted by the bite of Trombiculid mites. O. tsutsugamushi has a high genetic diversity and is increasingly recognized to have a wider global distribution than previously assumed. METHODOLOGY/PRINCIPLE FINDINGS: We evaluated the clinical outcomes and host immune responses of the two most relevant human pathogenic strains of O. tsutsugamushi; Karp (n = 4) and Gilliam (n = 4) in a time-course study over 80 days post infection (dpi) in a standardized scrub typhus non-human primate rhesus macaque model. We observed distinct features in clinical progression and immune response between the two strains; Gilliam-infected macaques developed more pronounced systemic infection characterized by an earlier onset of bacteremia, lymph node enlargement, eschar lesions and higher inflammatory markers during the acute phase of infection, when compared to the Karp strain. C-reactive protein (CRP) plasma levels, interferon gamma (IFN-γ, interleukin-1 receptor antagonist (IL-1ra), IL-15 serum concentrations, CRP/IL10- and IFN-γ/IL-10 ratios correlated positively with bacterial load in blood, implying activation of the innate immune response and preferential development of a T helper-type 1 immune response. The O. tsutsugamushi-specific immune memory responses in cells isolated from skin and lymph nodes at 80 dpi were more markedly elevated in the Gilliam-infected macaques than in the Karp-infected group. The comparative cytokine response dynamics of both strains revealed significant up-regulation of IFN-γ, tumor necrosis factor (TNF), IL-15, IL-6, IL-18, regulatory IL-1ra, IL-10, IL-8 and granulocyte-colony-stimulating factor (G-CSF). These data suggest that the clinical outcomes and host immune responses to scrub typhus could be associated with counter balancing effects of pro- and anti-inflammatory cytokine-mediated responses. Currently, no data on characterized time-course comparisons of O. tsutsugamushi strains regarding measures of disease severity and immune response is available. Our study provides evidence for the strain-specificity of host responses in scrub typhus, which supports our understanding of processes at the initial inoculation site (eschar), systemic disease progression, protective and/or pathogenic host immune mechanisms and cellular immune memory function. CONCLUSIONS/SIGNIFICANCE: This study characterised an improved intradermal rhesus macaque challenge model for scrub typhus, whereby the Gilliam strain infection associated with higher disease severity in the rhesus macaque model than the previous Karp strain infection. Difficulties associated with inoculum quantitation for obligate-intracellular bacteria were overcome by using functional inoculum titrations in outbred mice. The Gilliam-based rhesus macaque model provides improved endpoint measurements and contributes towards the identification of correlates of protection for future vaccine development.


Assuntos
Orientia tsutsugamushi , Tifo por Ácaros , Animais , Citocinas , Humanos , Imunidade , Interferon gama , Proteína Antagonista do Receptor de Interleucina 1 , Interleucina-10 , Interleucina-15 , Macaca mulatta , Camundongos , Orientia tsutsugamushi/genética , Tifo por Ácaros/microbiologia
4.
Vaccine ; 40(32): 4440-4452, 2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35697573

RESUMO

Coronavirus disease 2019 (COVID-19) is an acute respiratory illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The prevention of SARS-CoV-2 transmission has become a global priority. Previously, we showed that a protein subunit vaccine that was developed based on the fusion of the SARS-CoV-2 receptor-binding domain (RBD) to the Fc portion of human IgG1 (RBD-Fc), produced in Nicotiana benthamiana, and adjuvanted with alum, namely, Baiya SARS-CoV-2 Vax 1, induced potent immunological responses in both mice and cynomolgus monkeys. Hence, this study evaluated the protective efficacy, safety, and toxicity of Baiya SARS-CoV-2 Vax 1 in K18-hACE2 mice, monkeys and Wistar rats. Two doses of vaccine were administered three weeks apart on Days 0 and 21. The administration of the vaccine to K18-hACE2 mice reduced viral loads in the lungs and brains of the vaccinated animals and protected the mice against challenge with SARS-CoV-2. In monkeys, the results of safety pharmacology tests, general clinical observations, and a core battery of studies of three vital systems, namely, the central nervous, cardiovascular, and respiratory systems, did not reveal any safety concerns. The toxicology study of the vaccine in rats showed no vaccine-related pathological changes, and all the animals remained healthy under the conditions of this study. Furthermore, the vaccine did not cause any abnormal toxicity in rats and was clinically tolerated even at the highest tested concentration. In addition, general health status, body temperature, local toxicity at the administration site, hematology, and blood chemistry parameters were also monitored. Overall, this work presents the results of the first systematic study of the safety profile of a plant-derived vaccine, Baiya SARS-CoV-2 Vax 1; this approach can be considered a viable strategy for the development of vaccines against COVID-19.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Imunogenicidade da Vacina , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Ratos , Ratos Wistar , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinas de Subunidades Antigênicas
5.
Vaccines (Basel) ; 10(5)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35632541

RESUMO

Virus-like particles (VLPs) are highly immunogenic and versatile subunit vaccines composed of multimeric viral proteins that mimic the whole virus but lack genetic material. Due to the lack of infectivity, VLPs are being developed as safe and effective vaccines against various infectious diseases. In this study, we generated a chimeric VLP-based COVID-19 vaccine stably produced by HEK293T cells. The chimeric VLPs contain the influenza virus A matrix (M1) proteins and the SARS-CoV-2 Wuhan strain spike (S) proteins with a deletion of the polybasic furin cleavage motif and a replacement of the transmembrane and cytoplasmic tail with that of the influenza virus hemagglutinin (HA). These resulting chimeric S-M1 VLPs, displaying S and M1, were observed to be enveloped particles that are heterogeneous in shape and size. The intramuscular vaccination of BALB/c mice in a prime-boost regimen elicited high titers of S-specific IgG and neutralizing antibodies. After immunization and a challenge with SARS-CoV-2 in K18-hACE2 mice, the S-M1 VLP vaccination resulted in a drastic reduction in viremia, as well as a decreased viral load in the lungs and improved survival rates compared to the control mice. Balanced Th1 and Th2 responses of activated S-specific T-cells were observed. Moderate degrees of inflammation and viral RNA in the lungs and brains were observed in the vaccinated group; however, brain lesion scores were less than in the PBS control. Overall, we demonstrate the immunogenicity of a chimeric VLP-based COVID-19 vaccine which confers strong protection against SARS-CoV-2 viremia in mice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...