Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(21)2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33182331

RESUMO

In this study, we present the implementation of a neural network model capable of classifying radio frequency identification (RFID) tags based on their electromagnetic (EM) signature for authentication applications. One important application of the chipless RFID addresses the counterfeiting threat for manufacturers. The goal is to design and implement chipless RFID tags that possess a unique and unclonable fingerprint to authenticate objects. As EM characteristics are employed, these fingerprints cannot be easily spoofed. A set of 18 tags operating in V band (65-72 GHz) was designed and measured. V band is more sensitive to dimensional variations compared to other applications at lower frequencies, thus it is suitable to highlight the differences between the EM signatures. Machine learning (ML) approaches are used to characterize and classify the 18 EM responses in order to validate the authentication method. The proposed supervised method reached a maximum recognition rate of 100%, surpassing in terms of accuracy most of RFID fingerprinting related work. To determine the best network configuration, we used a random search algorithm. Further tuning was conducted by comparing the results of different learning algorithms in terms of accuracy and loss.

2.
Sensors (Basel) ; 20(20)2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33086724

RESUMO

In the last years, the commercial drone/unmanned aerial vehicles market has grown due to their technological performances (provided by the multiple onboard available sensors), low price, and ease of use. Being very attractive for an increasing number of applications, their presence represents a major issue for public or classified areas with a special status, because of the rising number of incidents. Our paper proposes a new approach for the drone movement detection and characterization based on the ultra-wide band (UWB) sensing system and advanced signal processing methods. This approach characterizes the movement of the drone using classical methods such as correlation, envelope detection, time-scale analysis, but also a new method, the recurrence plot analysis. The obtained results are compared in terms of movement map accuracy and required computation time in order to offer a future starting point for the drone intrusion detection.

3.
Sensors (Basel) ; 19(11)2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31141950

RESUMO

Monitoring highly dynamic environments is a difficult task when the changes within the systems require high speed monitoring systems. An active sensing system has to solve the problem of overlapped responses coming from different parts of the surveyed environment. Thus, the need of a new representation space which separates the overlapped responses, is mandatory. This paper describes two new concepts for high speed active sensing systems. On the emitter side, we propose a phase-space-based waveform design that presents a unique shape in the phase space, which can be easily converted into a real signal. We call it phase space lobe. The instantaneous frequency (IF) law of the emitted signal is found inside the time series. The main advantage of this new concept is its capability to generate several distinct signals, non-orthogonal in the time/frequency domain but orthogonal within the representation space, namely the phase diagram. On the receiver side, the IF law information is estimated in the phase diagram representation domain by quantifying the recurrent states of the system. This waveform design technique gives the possibility to develop the high speed sensing methods, adapted for monitoring complex dynamic phenomena In our paper, as an applicative context, we consider the problem of estimating the time of flight in an dynamic acoustic environment. In this context, we show through experimental trials that our approach provides three times more accurate estimation of time of flight than spectrogram based technique. This very good accuracy comes from the capability of our approach to generate separable IF law components as well as from the quantification in phase diagram, both of them being the key element of our approach for high speed sensing.

4.
J Acoust Soc Am ; 140(3): 1771, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27914421

RESUMO

This paper develops a localization method to estimate the depth of a target in the context of active sonar, at long ranges. The target depth is tactical information for both strategy and classification purposes. The Cramer-Rao lower bounds for the target position as range and depth are derived for a bilinear profile. The influence of sonar parameters on the standard deviations of the target range and depth are studied. A localization method based on ray back-propagation with a probabilistic approach is then investigated. Monte-Carlo simulations applied to a summer Mediterranean sound-speed profile are performed to evaluate the efficiency of the estimator. This method is finally validated on data in an experimental tank.

5.
Artigo em Inglês | MEDLINE | ID: mdl-25389163

RESUMO

In this paper, we propose a novel ultrasonic tomography method for pipeline flow field imaging, based on the Zernike polynomial series. Having intrusive multipath time-offlight ultrasonic measurements (difference in flight time and speed of ultrasound) at the input, we provide at the output tomograms of the fluid velocity components (axial, radial, and orthoradial velocity). Principally, by representing these velocities as Zernike polynomial series, we reduce the tomography problem to an ill-posed problem of finding the coefficients of the series, relying on the acquired ultrasonic measurements. Thereupon, this problem is treated by applying and comparing Tikhonov regularization and quadratically constrained ℓ1 minimization. To enhance the comparative analysis, we additionally introduce sparsity, by employing SVD-based filtering in selecting Zernike polynomials which are to be included in the series. The first approach-Tikhonov regularization without filtering, is used because it is the most suitable method. The performances are quantitatively tested by considering a residual norm and by estimating the flow using the axial velocity tomogram. Finally, the obtained results show the relative residual norm and the error in flow estimation, respectively, ~0.3% and ~1.6% for the less turbulent flow and ~0.5% and ~1.8% for the turbulent flow. Additionally, a qualitative validation is performed by proximate matching of the derived tomograms with a flow physical model.

6.
J Acoust Soc Am ; 134(3): 2546-55, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23968052

RESUMO

Many marine mammals produce highly nonlinear frequency modulations. Determining the time-frequency support of these sounds offers various applications, which include recognition, localization, and density estimation. This study introduces a low parameterized automated spectrogram segmentation method that is based on a theoretical probabilistic framework. In the first step, the background noise in the spectrogram is fitted with a Chi-squared distribution and thresholded using a Neyman-Pearson approach. In the second step, the number of false detections in time-frequency regions is modeled as a binomial distribution, and then through a Neyman-Pearson strategy, the time-frequency bins are gathered into regions of interest. The proposed method is validated on real data of large sequences of whistles from common dolphins, collected in the Bay of Biscay (France). The proposed method is also compared with two alternative approaches: the first is smoothing and thresholding of the spectrogram; the second is thresholding of the spectrogram followed by the use of morphological operators to gather the time-frequency bins and to remove false positives. This method is shown to increase the probability of detection for the same probability of false alarms.


Assuntos
Acústica , Golfinhos Comuns/fisiologia , Monitoramento Ambiental/métodos , Modelos Lineares , Biologia Marinha/métodos , Reconhecimento Automatizado de Padrão , Vocalização Animal , Algoritmos , Animais , Distribuição de Qui-Quadrado , Golfinhos Comuns/psicologia , França , Oceanos e Mares , Reprodutibilidade dos Testes , Processamento de Sinais Assistido por Computador , Espectrografia do Som , Fatores de Tempo
7.
J Acoust Soc Am ; 128(6): 3416-25, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21218875

RESUMO

Acoustic channel properties in a shallow water environment with moving source and receiver are difficult to investigate. In fact, when the source-receiver relative position changes, the underwater environment causes multipath and Doppler scale changes on the transmitted signal over low-to-medium frequencies (300 Hz-20 kHz). This is the result of a combination of multiple paths propagation, source and receiver motions, as well as sea surface motion or water column fast changes. This paper investigates underwater acoustic channel properties in a shallow water (up to 150 m depth) and moving source-receiver conditions using extracted time-scale features of the propagation channel model for low-to-medium frequencies. An average impulse response of one transmission is estimated using the physical characteristics of propagation and the wideband ambiguity plane. Since a different Doppler scale should be considered for each propagating signal, a time-warping filtering method is proposed to estimate the channel time delay and Doppler scale attributes for each propagating path. The proposed method enables the estimation of motion-compensated impulse responses, where different Doppler scaling factors are considered for the different time delays. It was validated for channel profiles using real data from the BASE'07 experiment conducted by the North Atlantic Treaty Organization Undersea Research Center in the shallow water environment of the Malta Plateau, South Sicily. This paper provides a contribution to many field applications including passive ocean tomography with unknown natural sources position and movement. Another example is active ocean tomography where sources motion enables to rapidly cover one operational area for rapid environmental assessment and hydrophones may be drifting in order to avoid additional flow noise.


Assuntos
Acústica , Efeito Doppler , Geologia , Modelos Teóricos , Processamento de Sinais Assistido por Computador , Som , Simulação por Computador , Sedimentos Geológicos , Movimento (Física) , Água do Mar , Espectrografia do Som , Fatores de Tempo
8.
J Acoust Soc Am ; 126(4): 1739-51, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19813789

RESUMO

The estimation of the impulse response (IR) of a propagation channel may be of great interest for a large number of underwater applications: underwater communications, sonar detection and localization, marine mammal monitoring, etc. It quantifies the distortions of the transmitted signal in the underwater channel and enables geoacoustic inversion. The propagating signal is usually subject to additional and undesirable distortions due to the motion of the transmitter-channel-receiver configuration. This paper shows the effects of the motion while estimating the IR by matched filtering between the transmitted and the received signals. A methodology to compare IR estimation with and without motion is presented. Based on this comparison, a method for motion effect compensation is proposed in order to reduce motion-induced distortions. The proposed methodology is applied to real data sets collected in 2007 by the Service Hydrographique et Océanographique de la Marine in a shallow water environment, proving its interest for motion effect analysis. Motion compensated estimation of IRs is computed from sources transmitting broadband linear frequency modulations moving at up to 12 knots in the shallow water environment of the Malta plateau, South of Sicilia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA