Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Psychiatry ; 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123724

RESUMO

The Shank3 gene encodes the major postsynaptic scaffolding protein SHANK3. Its mutation causes a syndromic form of autism spectrum disorder (ASD): Phelan-McDermid Syndrome (PMDS). It is characterized by global developmental delay, intellectual disorders (ID), ASD behavior, affective symptoms, as well as extra-cerebral symptoms. Although Shank3 deficiency causes a variety of molecular alterations, they do not suffice to explain all clinical aspects of this heterogenic syndrome. Since global gene expression alterations in Shank3 deficiency remain inadequately studied, we explored the transcriptome in vitro in primary hippocampal cells from Shank3∆11(-/-) mice, under control and lithium (Li) treatment conditions, and confirmed the findings in vivo. The Shank3∆11(-/-) genotype affected the overall transcriptome. Remarkably, extracellular matrix (ECM) and cell cycle transcriptional programs were disrupted. Accordingly, in the hippocampi of adolescent Shank3∆11(-/-) mice we found proteins of the collagen family and core cell cycle proteins downregulated. In vitro Li treatment of Shank3∆11(-/-) cells had a rescue-like effect on the ECM and cell cycle gene sets. Reversed ECM gene sets were part of a network, regulated by common transcription factors (TF) such as cAMP responsive element binding protein 1 (CREB1) and ß-Catenin (CTNNB1), which are known downstream effectors of synaptic activity and targets of Li. These TFs were less abundant and/or hypo-phosphorylated in hippocampi of Shank3∆11(-/-) mice and could be rescued with Li in vitro and in vivo. Our investigations suggest the ECM compartment and cell cycle genes as new players in the pathophysiology of Shank3 deficiency, and imply involvement of transcriptional regulators, which can be modulated by Li. This work supports Li as potential drug in the management of PMDS symptoms, where a Phase III study is ongoing.

2.
Front Synaptic Neurosci ; 14: 890231, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35734418

RESUMO

SHANK3 is a scaffolding protein implicated in autism spectrum disorders (ASD). Its function at excitatory glutamatergic synapses has been studied for the last two decades, however, tissue-specific expression patterns as well as its subcellular localization need to be studied in further detail. Especially the close sequence homology of SHANK3 to its protein family members SHANK2 and SHANK1 raises the emerging need for specific antibodies that are validated for the desired methodology. With this study, we aim to validate a set of commercial as well as homemade SHANK3 antibodies in Western Blotting, and synaptic immunocyto- and immunohistochemistry. We found that only a small subset of the antibodies included in this study meet the criteria of quality and specificity. Therefore, we aim to share our findings on SHANK3 antibody validation but also raise awareness of the necessity of antibody specificity testing in the field.

3.
Cell Mol Life Sci ; 79(7): 371, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35726031

RESUMO

Mutations or deletions of the SHANK3 gene are causative for Phelan-McDermid syndrome (PMDS), a syndromic form of autism spectrum disorders (ASDs). We analyzed Shank3Δ11(-/-) mice and organoids from PMDS individuals to study effects on myelin. SHANK3 was found to be expressed in oligodendrocytes and Schwann cells, and MRI analysis of Shank3Δ11(-/-) mice revealed a reduced volume of the corpus callosum as seen in PMDS patients. Myelin proteins including myelin basic protein showed significant temporal and regional differences with lower levels in the CNS but increased amounts in the PNS of Shank3Δ11(-/-) animals. Node, as well as paranode, lengths were increased and ultrastructural analysis revealed region-specific alterations of the myelin sheaths. In PMDS hiPSC-derived cerebral organoids we observed an altered number and delayed maturation of myelinating cells. These findings provide evidence that, in addition to a synaptic deregulation, impairment of myelin might profoundly contribute to the clinical manifestation of SHANK3 deficiency.


Assuntos
Transtorno do Espectro Autista , Transtornos Cromossômicos , Proteínas dos Microfilamentos , Bainha de Mielina , Proteínas do Tecido Nervoso , Animais , Transtorno do Espectro Autista/genética , Deleção Cromossômica , Transtornos Cromossômicos/genética , Transtornos Cromossômicos/metabolismo , Cromossomos Humanos Par 22 , Humanos , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Bainha de Mielina/patologia , Proteínas do Tecido Nervoso/genética , Sistema Nervoso Periférico/metabolismo
4.
Front Mol Neurosci ; 14: 773571, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899182

RESUMO

SHANK2 (ProSAP1) is a postsynaptic scaffolding protein of excitatory synapses in the central nervous system and implicated in the development of autism spectrum disorders (ASD). Patients with mutations in SHANK2 show autism-like behaviors, developmental delay, and intellectual disability. We generated human induced pluripotent stem cells (hiPSC) from a patient carrying a heterozygous deletion of SHANK2 and from the unaffected parents. In patient hiPSCs and derived neurons SHANK2 mRNA and protein expression was reduced. During neuronal maturation, a reduction in growth cone size and a transient increase in neuronal soma size were observed. Neuronal proliferation was increased, and apoptosis was decreased in young and mature neurons. Additionally, mature patient hiPSC-derived neurons showed dysregulated excitatory signaling and a decrease of a broad range of signaling molecules of the ERK-MAP kinase pathway. These findings could be confirmed in brain samples from Shank2(-/-) mice, which also showed decreased mGluR5 and phospho-ERK1/2 expression. Our study broadens the current knowledge of SHANK2-related ASD. We highlight the importance of excitatory-inhibitory balance and mGluR5 dysregulation with disturbed downstream ERK1/2 signaling in ASD, which provides possible future therapeutic strategies for SHANK2-related ASD.

5.
EMBO Mol Med ; 13(7): e13131, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34125498

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease, which is still missing effective therapeutic strategies. Although manipulation of neuronal excitability has been tested in murine and human ALS models, it is still under debate whether neuronal activity might represent a valid target for efficient therapies. In this study, we exploited a combination of transcriptomics, proteomics, optogenetics and pharmacological approaches to investigate the activity-related pathological features of iPSC-derived C9orf72-mutant motoneurons (MN). We found that human ALSC9orf72 MN are characterized by accumulation of aberrant aggresomes, reduced expression of synaptic genes, loss of synaptic contacts and a dynamic "malactivation" of the transcription factor CREB. A similar phenotype was also found in TBK1-mutant MN and upon overexpression of poly(GA) aggregates in primary neurons, indicating a strong convergence of pathological phenotypes on synaptic dysregulation. Notably, these alterations, along with neuronal survival, could be rescued by treating ALS-related neurons with the K+ channel blockers Apamin and XE991, which, respectively, target the SK and the Kv7 channels. Thus, our study shows that restoring the activity-dependent transcriptional programme and synaptic composition exerts a neuroprotective effect on ALS disease progression.


Assuntos
Esclerose Lateral Amiotrófica , Células-Tronco Pluripotentes Induzidas , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Animais , Humanos , Camundongos , Neurônios Motores
6.
Sci Transl Med ; 12(547)2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32522805

RESUMO

Heterozygous mutations of the gene encoding the postsynaptic protein SHANK3 are associated with syndromic forms of autism spectrum disorders (ASDs). One of the earliest clinical symptoms in SHANK3-associated ASD is neonatal skeletal muscle hypotonia. This symptom can be critical for the early diagnosis of affected children; however, the mechanism mediating hypotonia in ASD is not completely understood. Here, we used a combination of patient-derived human induced pluripotent stem cells (hiPSCs), Shank3Δ11(-/-) mice, and Phelan-McDermid syndrome (PMDS) muscle biopsies from patients of different ages to analyze the role of SHANK3 on motor unit development. Our results suggest that the hypotonia in SHANK3 deficiency might be caused by dysfunctions in all elements of the voluntary motor system: motoneurons, neuromuscular junctions (NMJs), and striated muscles. We found that SHANK3 localizes in Z-discs in the skeletal muscle sarcomere and co-immunoprecipitates with α-ACTININ. SHANK3 deficiency lead to shortened Z-discs and severe impairment of acetylcholine receptor clustering in hiPSC-derived myotubes and in muscle from Shank3Δ11(-/-) mice and patients with PMDS, indicating a crucial role for SHANK3 in the maturation of NMJs and striated muscle. Functional motor defects in Shank3Δ11(-/-) mice could be rescued with the troponin activator Tirasemtiv that sensitizes muscle fibers to calcium. Our observations give insight into the function of SHANK3 besides the central nervous system and imply potential treatment strategies for SHANK3-associated ASD.


Assuntos
Transtorno Autístico , Células-Tronco Pluripotentes Induzidas , Animais , Humanos , Camundongos , Proteínas dos Microfilamentos , Músculo Esquelético , Mutação/genética , Proteínas do Tecido Nervoso/genética , Junção Neuromuscular
7.
Int J Mol Sci ; 20(20)2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31640116

RESUMO

The growth of adipose tissue and its vasculature are tightly associated. Angiogenic factors have been linked to obesity, yet little is known about their expression during early childhood. To identify associations of angiogenic factors with characteristics on individual and tissue level, subcutaneous white adipose tissue samples were taken from 45 children aged 0-9 years undergoing elective surgery. We measured the expression of vascular endothelial growth factor A (VEFGA), fibroblast growth factor 1 and 2 (FGF1, FGF2), angiopoietin 1 and 2 (ANGPT1, ANGPT2), TEK receptor tyrosine kinase (TEK), and von Willebrand factor (VWF). In addition, we determined the mean adipocyte size in histologic tissue sections. We found positive correlations of age with FGF1 and FGF2 and a negative correlation with ANGPT2, with pronounced differences in the first two years of life. FGF1, FGF2, and ANGPT1 correlated positively with adipocyte size. Furthermore, we identified a correlation of ANGPT1 and TEK with body mass index-standard deviation score (BMI-SDS), a measure to define childhood obesity. Except for ANGPT2, all angiogenic factors correlated positively with the endothelial marker VWF. In sum, our findings suggest that differences related to BMI-SDS begin early in childhood, and the analyzed angiogenic factors possess distinct roles in adipose tissue biology.


Assuntos
Tecido Adiposo Branco/citologia , Tecido Adiposo Branco/metabolismo , Proteínas Angiogênicas/metabolismo , Angiopoietina-1/metabolismo , Angiopoietina-2/metabolismo , Índice de Massa Corporal , Tamanho Celular , Criança , Pré-Escolar , Feminino , Fator 1 de Crescimento de Fibroblastos/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Humanos , Lactente , Recém-Nascido , Masculino , Receptor TIE-2/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator de von Willebrand/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...