Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(15): 150602, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37897769

RESUMO

Stabilizer operations are at the heart of quantum error correction and are typically implemented in software-controlled entangling gates and measurements of groups of qubits. Alternatively, qubits can be designed so that the Hamiltonian corresponds directly to a stabilizer for protecting quantum information. We demonstrate such a hardware implementation of stabilizers in a superconducting circuit composed of chains of π-periodic Josephson elements. With local on-chip flux and charge biasing, we observe a progressive softening of the energy band dispersion with respect to flux as the number of frustrated plaquette elements is increased, in close agreement with our numerical modeling.

2.
Nature ; 601(7894): 531-536, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34847568

RESUMO

Quantum many-body systems display rich phase structure in their low-temperature equilibrium states1. However, much of nature is not in thermal equilibrium. Remarkably, it was recently predicted that out-of-equilibrium systems can exhibit novel dynamical phases2-8 that may otherwise be forbidden by equilibrium thermodynamics, a paradigmatic example being the discrete time crystal (DTC)7,9-15. Concretely, dynamical phases can be defined in periodically driven many-body-localized (MBL) systems via the concept of eigenstate order7,16,17. In eigenstate-ordered MBL phases, the entire many-body spectrum exhibits quantum correlations and long-range order, with characteristic signatures in late-time dynamics from all initial states. It is, however, challenging to experimentally distinguish such stable phases from transient phenomena, or from regimes in which the dynamics of a few select states can mask typical behaviour. Here we implement tunable controlled-phase (CPHASE) gates on an array of superconducting qubits to experimentally observe an MBL-DTC and demonstrate its characteristic spatiotemporal response for generic initial states7,9,10. Our work employs a time-reversal protocol to quantify the impact of external decoherence, and leverages quantum typicality to circumvent the exponential cost of densely sampling the eigenspectrum. Furthermore, we locate the phase transition out of the DTC with an experimental finite-size analysis. These results establish a scalable approach to studying non-equilibrium phases of matter on quantum processors.


Assuntos
Temperatura Baixa , Transição de Fase , Termodinâmica
3.
Science ; 374(6572): 1237-1241, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34855491

RESUMO

The discovery of topological order has revised the understanding of quantum matter and provided the theoretical foundation for many quantum error­correcting codes. Realizing topologically ordered states has proven to be challenging in both condensed matter and synthetic quantum systems. We prepared the ground state of the toric code Hamiltonian using an efficient quantum circuit on a superconducting quantum processor. We measured a topological entanglement entropy near the expected value of ­ln2 and simulated anyon interferometry to extract the braiding statistics of the emergent excitations. Furthermore, we investigated key aspects of the surface code, including logical state injection and the decay of the nonlocal order parameter. Our results demonstrate the potential for quantum processors to provide insights into topological quantum matter and quantum error correction.

4.
Science ; 374(6574): 1479-1483, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34709938

RESUMO

Interactions in quantum systems can spread initially localized quantum information into the exponentially many degrees of freedom of the entire system. Understanding this process, known as quantum scrambling, is key to resolving several open questions in physics. Here, by measuring the time-dependent evolution and fluctuation of out-of-time-order correlators, we experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor. We engineer quantum circuits that distinguish operator spreading and operator entanglement and experimentally observe their respective signatures. We show that whereas operator spreading is captured by an efficient classical model, operator entanglement in idealized circuits requires exponentially scaled computational resources to simulate. These results open the path to studying complex and practically relevant physical observables with near-term quantum processors.

5.
Nature ; 594(7863): 369-373, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34135523

RESUMO

The central challenge in building a quantum computer is error correction. Unlike classical bits, which are susceptible to only one type of error, quantum bits (qubits) are susceptible to two types of error, corresponding to flips of the qubit state about the X and Z directions. Although the Heisenberg uncertainty principle precludes simultaneous monitoring of X- and Z-flips on a single qubit, it is possible to encode quantum information in large arrays of entangled qubits that enable accurate monitoring of all errors in the system, provided that the error rate is low1. Another crucial requirement is that errors cannot be correlated. Here we characterize a superconducting multiqubit circuit and find that charge noise in the chip is highly correlated on a length scale over 600 micrometres; moreover, discrete charge jumps are accompanied by a strong transient reduction of qubit energy relaxation time across the millimetre-scale chip. The resulting correlated errors are explained in terms of the charging event and phonon-mediated quasiparticle generation associated with absorption of γ-rays and cosmic-ray muons in the qubit substrate. Robust quantum error correction will require the development of mitigation strategies to protect multiqubit arrays from correlated errors due to particle impacts.

6.
Sci Adv ; 6(51)2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33355127

RESUMO

A major issue for the implementation of large-scale superconducting quantum circuits is the interaction with interfacial two-level system (TLS) defects that lead to qubit parameter fluctuations and relaxation. Another major challenge comes from nonequilibrium quasiparticles (QPs) that result in qubit relaxation and dephasing. Here, we reveal a previously unexplored decoherence mechanism in the form of a new type of TLS originating from trapped QPs, which can induce qubit relaxation. Using spectral, temporal, thermal, and magnetic field mapping of TLS-induced fluctuations in frequency tunable resonators, we identify a highly coherent subset of the general TLS population with a low reconfiguration temperature ∼300 mK and a nonuniform density of states. These properties can be understood if the TLS are formed by QPs trapped in shallow subgap states formed by spatial fluctutations of the superconducting order parameter. This implies that even very rare QP bursts will affect coherence over exponentially long time scales.

7.
Phys Rev Lett ; 120(3): 037004, 2018 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-29400488

RESUMO

Strongly disordered pseudogapped superconductors are expected to display arbitrarily high values of kinetic inductance close to the superconductor-insulator transition (SIT), which make them attractive for the implementation of large dissipationless inductance. We develop the theory of the collective modes in these superconductors and discuss associated dissipation at microwave frequencies. We obtain the collective mode spectra dependence on the disorder level and conclude that collective modes become a relevant source of dissipation and noise in the outer proximity of the SIT.

8.
Phys Rev Lett ; 117(15): 156601, 2016 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-27768332

RESUMO

We combine numerical diagonalization with semianalytical calculations to prove the existence of the intermediate nonergodic but delocalized phase in the Anderson model on disordered hierarchical lattices. We suggest a new generalized population dynamics that is able to detect the violation of ergodicity of the delocalized states within the Abou-Chakra, Anderson, and Thouless recursive scheme. This result is supplemented by statistics of random wave functions extracted from exact diagonalization of the Anderson model on ensemble of disordered random regular graphs (RRG) of N sites with the connectivity K=2. By extrapolation of the results of both approaches to N→∞ we obtain the fractal dimensions D_{1}(W) and D_{2}(W) as well as the population dynamics exponent D(W) with the accuracy sufficient to claim that they are nontrivial in the broad interval of disorder strength W_{E}10^{5} reveals a singularity in D_{1,2}(W) dependencies which provides clear evidence for the first order transition between the two delocalized phases on RRG at W_{E}≈10.0. We discuss the implications of these results for quantum and classical nonintegrable and many-body systems.

9.
Phys Rev Lett ; 116(10): 107002, 2016 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-27015505

RESUMO

We observe the effect of the Aharonov-Casher (AC) interference on the spectrum of a superconducting system containing a symmetric Cooper pair box (CPB) and a large inductance. By varying the charge n_{g} induced on the CPB island, we observe oscillations of the device spectrum with the period Δn_{g}=2e. These oscillations are attributed to the charge-controlled AC interference between the fluxon tunneling processes in the CPB Josephson junctions. The measured phase and charge dependences of the frequencies of the |0⟩→|1⟩ and |0⟩→|2⟩ transitions are in good agreement with our numerical simulations. Almost complete suppression of the single fluxon tunneling due to destructive interference is observed for the charge n_{g}=e(2n+1). The CPB in this regime enables fluxon pairing, which can be used for the development of parity-protected superconducting qubits.

10.
Phys Rev Lett ; 115(19): 197001, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26588406

RESUMO

The search for Majorana bound states in solid-state physics has been limited to materials that display a gap in their bulk spectrum. We show that such unpaired states appear in certain quasi-one-dimensional Josephson-junction arrays with gapless bulk excitations. The bulk modes mediate a coupling between Majorana bound states via the Ruderman-Kittel-Yosida-Kasuya mechanism. As a consequence, the lowest energy doublet acquires a finite energy difference. For a realistic set of parameters this energy splitting remains much smaller than the energy of the bulk eigenstates even for short chains of length L∼10.

11.
Phys Rev Lett ; 109(13): 137003, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-23030113

RESUMO

We report on the realization of a superinductor, a dissipationless element whose microwave impedance greatly exceeds the resistance quantum R(Q). The design of the superinductor, implemented as a ladder of nanoscale Josephson junctions, enables tuning of the inductance and its nonlinearity by a weak magnetic field. The Rabi decay time of the superinductor-based qubit exceeds 1 µs. The high kinetic inductance and strong nonlinearity offer new types of functionality, including the development of qubits protected from both flux and charge noises, fault tolerant quantum computing, and high-impedance isolation for electrical current standards based on Bloch oscillations.

12.
Rep Prog Phys ; 75(7): 072001, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22790777

RESUMO

We review the general notion of topological protection of quantum states in spin models and its relation with the ideas of quantum error correction. We show that topological protection can be viewed as a Hamiltonian realization of error correction: for a quantum code for which the minimal number of errors that remain undetected is N, the corresponding Hamiltonian model of the effects of the environment noise appears only in the Nth order of the perturbation theory.We discuss the simplest model Hamiltonians that realize topological protection and their implementation in superconducting arrays. We focus on two dual realizations: in one the protected state is stored in the parity of the Cooper pair number, in the other, in the parity of the flux number. In both cases the superconducting arrays allow a number of fault-tolerant operations that should make the universal quantum computation possible.


Assuntos
Computadores Moleculares , Modelos Químicos , Teoria Quântica , Simulação por Computador
13.
Nature ; 484(7394): 355-8, 2012 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-22517162

RESUMO

A hundred years after the discovery of superconductivity, one fundamental prediction of the theory, coherent quantum phase slip (CQPS), has not been observed. CQPS is a phenomenon exactly dual to the Josephson effect; whereas the latter is a coherent transfer of charges between superconducting leads, the former is a coherent transfer of vortices or fluxes across a superconducting wire. In contrast to previously reported observations of incoherent phase slip, CQPS has been only a subject of theoretical study. Its experimental demonstration is made difficult by quasiparticle dissipation due to gapless excitations in nanowires or in vortex cores. This difficulty might be overcome by using certain strongly disordered superconductors near the superconductor-insulator transition. Here we report direct observation of CQPS in a narrow segment of a superconducting loop made of strongly disordered indium oxide; the effect is made manifest through the superposition of quantum states with different numbers of flux quanta. As with the Josephson effect, our observation should lead to new applications in superconducting electronics and quantum metrology.

14.
Phys Rev Lett ; 105(3): 037001, 2010 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-20867791

RESUMO

We develop an analytical theory, based on the quantum cavity method, describing the quantum phase transitions in low-temperature, strongly disordered ferromagnets and superconductors. At variance with the usual quantum critical points, we find a phase diagram with two critical points separating three phases. When the disorder increases, the systems goes from the ordered phase to an intermediate disordered phase characterized by activated transport and then to a second disordered phase where no transport is possible. Both the ordered and disordered phases exhibit strong inhomogeneity of their basic properties typical of glassy physics.

15.
Phys Rev Lett ; 100(5): 050601, 2008 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-18352352

RESUMO

We consider two configurations of a random directed polymer of length L confined to a plane and ending in two points separated by 2u. Defining the mean free-energy F[over ] and the free-energy difference F;{'} of the two configurations, we determine the joint distribution function P(L,u)(F[over ],F(')) using the replica approach. We find that for large L and large negative free energies F[over ], the joint distribution function factorizes into longitudinal [P(L,u)(F[over ])] and transverse [P(u)(F('))] components, which furthermore coincide with results obtained previously via different independent routes.

16.
Phys Rev Lett ; 98(2): 027001, 2007 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-17358636

RESUMO

We develop a theory of a pseudogap state appearing near the superconductor-insulator (SI) transition in strongly disordered metals with an attractive interaction. We show that such an interaction combined with the fractal nature of the single-particle wave functions near the mobility edge leads to an anomalously large single-particle gap in the superconducting state near SI transition that persists and even increases in the insulating state long after the superconductivity is destroyed. We give analytic expressions for the value of the pseudogap in terms of the inverse participation ratio of the corresponding localization problem.

17.
Phys Rev Lett ; 93(5): 057001, 2004 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-15323724

RESUMO

We discuss a fundamental limitation for the coherent operation of superconducting quantum bits originating from phonon radiation generated in the Josephson junctions of the device. The time dependent superconducting phase across the junction produces an electric field that couples to the underlying crystal lattice via the piezoelectric effect. We determine the radiation resistance of the junction due to phonon emission and derive substantial decoherence rates for the quantum bits, which are compatible with quality factors measured in recent experiments.

18.
Phys Rev Lett ; 92(9): 098301, 2004 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-15089517

RESUMO

We propose a design for a qubit with four superconducting islands in the topology of a symmetric tetrahedron, uniformly frustrated with one-half flux quantum per loop and one-half Cooper pair per island. This structure emulates a noise-resistant spin-1/2 system in a vanishing magnetic field. The flux frustration boosts quantum fluctuations and relieves the constraints on junction fabrication. Variability of manipulation and optimized readout are additional benefits of this design.

19.
Phys Rev Lett ; 93(25): 256403, 2004 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-15697920

RESUMO

We establish the connection between the presence of a glass phase and the appearance of a Coulomb gap in disordered materials with strongly interacting electrons. Treating multiparticle correlations in a systematic way, we show that in the case of strong disorder a continuous glass transition takes place whose Landau expansion is identical to that of the Sherrington-Kirkpatrick spin glass. We show that the marginal stability of the glass phase controls the physics of these systems: it results in slow dynamics and leads to the formation of a Coulomb gap.

20.
Phys Rev Lett ; 90(10): 107003, 2003 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-12689026

RESUMO

We propose a Josephson junction array which can be tuned into an unconventional insulating state by varying external magnetic field. This insulating state retains a gap to half-vortices; as a consequence, such an array with nontrivial global geometry exhibits a ground state degeneracy. This degeneracy is protected from the effects of external noise. We compute the gaps, separating higher energy states from the degenerate ground state, and we discuss experiments probing the unusual properties of this insulator.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...