Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 11: e16354, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901471

RESUMO

Citrus crops are affected by many fungal diseases. Among them, Citrus Black Spot caused by the ascomycete Phyllosticta citricarpa is particularly economically damaging wherever it occurs. Many other species of Phyllosticta are described on Citrus, but only P. citricarpa is considered a quarantine pest on the European continent. In order to prevent the introduction of this species into Europe, it is essential to have a detection test which can reliably identify it, and not confuse it with other species present on citrus, notably P. paracitricarpa. The latter taxon has recently been described as very close to P. citricarpa, and most detection tests do not allow to distinguish the two species. In this work, we exploited the genomic data of 37 isolates of Phyllosticta spp. from citrus, firstly to assess their phylogenetic relationships, and secondly to search for genomic regions that allowed the definition of species-specific markers of P. citricarpa. Analysis of 51 concatenated genes separated P. citricarpa and P. paracitricarpa in two phylogenetic clades. A locus was selected to define a hydrolysis probe and primers combination that could be used in real-time PCR for the specific detection of the quarantine species, to the exclusion of all others present on Citrus. This test was then thoroughly validated on a set of strains covering a wide geographical diversity, and on numerous biological samples to demonstrate its reliability for regulatory control. The validation data highlighted the need to check the reliability of the test in advance, when a change of reagents was being considered.


Assuntos
Ascomicetos , Citrus , Filogenia , Citrus/genética , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Genômica , Ascomicetos/genética
3.
J Fungi (Basel) ; 8(8)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35893146

RESUMO

Ceratocystis platani (CP), an ascomycetous fungus, is the agent of canker stain, a lethal vascular disease of Platanus species. Ceratocystis platani has been listed as a quarantine pest (EPPO A2 list) due to extensive damage caused in Southern Europe and the Mediterranean region. As traditional diagnostic assays are ineffective, a Real-Time PCR detection method based on EvaGreen, SYBR Green, and Taqman assays was previously developed, validated in-house, and included in the official EPPO standard PM7/14 (2). Here, we describe the results of a test performance study performed by nine European laboratories for the purpose of an interlaboratory validation. Verification of the DNA extracted from biological samples guaranteed the high quality of preparations, and the stability and the homogeneity of the aliquots intended for the laboratories. All of the laboratories reproduced nearly identical standard curves with efficiencies close to 100%. Testing of blind-coded DNA extracted from wood samples revealed that all performance parameters-diagnostic sensitivity, diagnostic specificity, accuracy and reproducibility-were best fit in most cases both at the laboratory and at the assay level. The previously established limit of detection, 3 fg per PCR reaction, was also validated with similar excellent results. The high interlaboratory performance of this Real-Time PCR method confirms its value as a primary tool to safeguard C. platani-free countries by way of an accurate monitoring, and to investigate the resistance level of potentially canker stain-resistant Platanus genotypes.

4.
Methods Mol Biol ; 2536: 139-153, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35819603

RESUMO

Pyricularia oryzae is a fungal plant pathogen causing blast disease in several species of the Poaceae family. It encompasses several genetic lineages, including one that is pathogenic on wheat and belongs to the Triticum lineage of P. oryzae. The fungus spreads at short distances by its airborne and rain-splash dispersed spores, and at longer distances via cryptically infected wheat seeds, through trade. Here, we describe a practical method to detect P. oryzae Triticum lineage in wheat seeds, after a biological enrichment step, with various options for molecular testing involving several DNA-based technologies: polymerase chain reaction (PCR), real-time PCR, and loop-mediated isothermal amplification (LAMP). The array of available molecular assays is presented in this protocol, each of them targeting specific regions of the P. oryzae Triticum lineage and offering different levels in terms of sensitivity and specificity.


Assuntos
Magnaporthe , Triticum , Magnaporthe/genética , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase em Tempo Real , Sementes/genética , Sementes/microbiologia , Triticum/genética , Triticum/microbiologia
5.
PLoS Pathog ; 18(7): e1010687, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35877779

RESUMO

Many species of fungal plant pathogens coexist as multiple lineages on the same host, but the factors underlying the origin and maintenance of population structure remain largely unknown. The rice blast fungus Pyricularia oryzae is a widespread model plant pathogen displaying population subdivision. However, most studies of natural variation in P. oryzae have been limited in genomic or geographic resolution, and host adaptation is the only factor that has been investigated extensively as a contributor to population subdivision. In an effort to complement previous studies, we analyzed genetic and phenotypic diversity in isolates of the rice blast fungus covering a broad geographical range. Using single-nucleotide polymorphism genotyping data for 886 isolates sampled from 152 sites in 51 countries, we showed that population subdivision of P. oryzae in one recombining and three clonal lineages with broad distributions persisted with deeper sampling. We also extended previous findings by showing further population subdivision of the recombining lineage into one international and three Asian clusters, and by providing evidence that the three clonal lineages of P. oryzae were found in areas with different prevailing environmental conditions, indicating niche separation. Pathogenicity tests and bioinformatic analyses using an extended set of isolates and rice varieties indicated that partial specialization to rice subgroups contributed to niche separation between lineages, and differences in repertoires of putative virulence effectors were consistent with differences in host range. Experimental crosses revealed that female sterility and early post-mating genetic incompatibilities acted as strong additional barriers to gene flow between clonal lineages. Our results demonstrate that the spread of a fungal pathogen across heterogeneous habitats and divergent populations of a crop species can lead to niche separation and reproductive isolation between distinct, widely distributed, lineages.


Assuntos
Magnaporthe , Oryza , Ascomicetos , Variação Genética , Magnaporthe/genética , Oryza/microbiologia , Doenças das Plantas/microbiologia
6.
PeerJ ; 9: e12496, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34917421

RESUMO

Leaf blotch caused by Alternaria spp. is a common disease in apple-producing regions. The disease is usually associated with one phylogenetic species and one species complex, Alternaria alternata and the Alternaria arborescens species complex (A. arborescens SC), respectively. Both taxa may include the Alternaria apple pathotype, a quarantine or regulated pathogen in several countries. The apple pathotype is characterized by the production of a host-selective toxin (HST) which is involved in pathogenicity towards the apple. A cluster of genes located on conditionally dispensable chromosomes (CDCs) is involved in the production of this HST (namely AMT in the case of the apple pathotype). Since 2016, leaf blotch and premature tree defoliation attributed to Alternaria spp. have been observed in apple-producing regions of central and south-eastern France. Our study aimed to identify the Alternaria species involved in apple tree defoliation and assess the presence of the apple pathotype in French orchards. From 2016 to 2018, 166 isolates were collected and identified by multi-locus sequence typing (MLST). This analysis revealed that all these French isolates belonged to either the A. arborescens SC or A. alternata. Specific PCR detection targeting three genes located on the CDC did not indicate the presence of the apple pathotype in France. Pathogenicity was assessed under laboratory conditions on detached leaves of Golden Delicious and Gala apple cultivars for a representative subset of 28 Alternaria isolates. All the tested isolates were pathogenic on detached leaves of cultivars Golden Delicious and Gala, but no differences were observed between the pathogenicity levels of A. arborescens SC and A. alternata. However, the results of our pathogenicity test suggest that cultivar Golden Delicious is more susceptible than Gala to Alternaria leaf blotch. Implications in the detection of the Alternaria apple pathotype and the taxonomic assignment of Alternaria isolates involved in Alternaria leaf blotch are discussed.

7.
Appl Microbiol Biotechnol ; 104(21): 9363-9385, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32926221

RESUMO

Phyllosticta citricarpa, Elsinoë fawcettii, Elsinoë australis, and Pseudocercospora angolensis are major pathogens of citrus crops worldwide and can cause non-characteristic symptoms that may lead to confusion regarding the causative agent. These fungi are subject to international phytosanitary regulations, and testing on fruits or leaves requires accurate and easy-to-use tools. New multiplex conventional PCR and real-time PCR assays were developed here to achieve highly accurate simultaneous detection of all four fungal pathogens in fruit tissues. We designed new oligonucleotide combinations for P. citricarpa, E. fawcettii, and E. australis and combined them with already available primers and hydrolysis probes to be used in either PCR assay. The limit of detection for multiplex conventional PCR was as low as 100 pg µL-1 for P. citricarpa, E. fawcettii, and E. australis and 10 pg µL-1 of target DNA per reaction tube for P. angolensis. The quadruplex real-time PCR assay successfully yielded repeatable positive results with as low as 242, 243, 241, and 242 plasmidic copies of target DNA of P. citricarpa, E. fawcettii, E. australis, and P. angolensis, respectively. Moreover, analysis of 60 naturally infected citrus samples yielded 100% concordant results by both assays. Our validation experiment revealed that the multiplex real-time PCR assay showed high specificity except a cross-reaction with P. paracitricarpa DNA. Sensitivity, repeatability, reproducibility, and robustness were verified, and the assay could be used following different DNA extraction procedures, supporting fitness for routine analysis. These new multiplex tools should be of great interest as cost-effective solutions for regulatory authorities and diagnostic laboratories, enabling testing for four important pathogens in single-tube reactions. KEY POINTS: • Development of new conventional PCR and qPCR assays for four citrus pathogens. • Very low limits of detection were found for multiplex conventional PCR. • qPCR had high specificity, sensitivity, repeatability, reproducibility, and robustness.


Assuntos
Citrus , Ascomicetos , Reação em Cadeia da Polimerase Multiplex , Doenças das Plantas , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes
8.
Plant Dis ; 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32755365

RESUMO

Fusarium oxysporum f. sp. cubense (Foc) is a fungus causing Fusarium wilt of banana (Musa spp.). The fungus is divided into three races and 24 vegetative compatibility groups (VCG) of which VCG 01213/16, commonly known as Foc tropical race 4 (Foc TR4), is of particular concern. Foc TR4 severely affects Cavendish (AAA) bananas, which comprise about 50% of all bananas produced globally, as well as many varieties susceptible to the other races of Foc. The pathogen was restricted to Southeast Asia and Australia until 2012, where after it has been detected in the Middle East, Mozambique in Africa, and Colombia in South America (Viljoen et al. 2020). Here we report the first detection of Foc TR4 in the French department of Mayotte, located in the Indian Ocean. In September 2019, leaf yellowing and wilting symptoms were observed in individual plants of the banana subgroups Silk (AAB) (cv. "Kissoukari") and Bluggoe (ABB) (cv. "Baraboufaka"). The symptomatic individuals were found in private gardens in the village of Poroani in Southwest Mayotte (World Geodetic System [WGS] 12° 53' 31.83''S, 45° 8' 30.98" E). When the pseudostems of symptomatic plants were split open, dark red to brown vascular discoloration was observed. Pseudostem tissue samples were collected and identified as Foc TR4 with the real-time PCR assay developed by Aguayo et al. (2017). Sections of the pseudostem samples were surface sterilized and used to isolate the fungus on potato dextrose agar (PDA) medium. Isolates were identified as F. oxysporum based on cultural and morphological characteristics as described in Leslie and Summerell (2006), which included fluffy aerial mycelia on PDA and the presence of short monophialides conidigenous cells bearing microconidia arranged in false heads. Abundant chlamydospores were also produced on synthetic nutrient poor agar (SNA) media. Single-spored isolates were used to develop nit mutants for vegetative compatibility group (VCG) testing (Correll 1991; Puhalla 1985). The isolates were confirmed as VCG 01213/16 as formation of heterokaryons was obtained with the nit mutants of the universal Foc TR4 tester. Two VCG 01213/16 isolates were then selected for pathogenicity testing by inoculating 2-month-old tissue culture-derived Cavendish plants, using the method described by Viljoen et al. (2017). After 10 weeks, the Foc TR4-inoculated plants produced wilting symptoms and internal rhizome discoloration typical of Fusarium wilt. Fusarium oxysporum was re-isolated from the inoculated plants and identified as Foc TR4/VCG 01213/16 by PCR (Dita et al. 2010; Matthews et al. 2020), thereby fulfilling Koch's postulates. Local authorities have destroyed the infected plants, and have undertaken an extensive survey to determine the distribution of Foc TR4 on the island. Three additional positive cases, identified with the real-time PCR assay of Aguayo et al. (2017), were found in the localities of Koungou ([WGS] 12° 44' 03''S, 45° 12' 08" E) and Bouéni ([WGS] 12° 54' 25''S, 45° 04' 43" E). These included infected Cavendish banana (AAA) plants (cv. "Kontriké"). This is the first time that Foc TR4 has been found on a banana variety other than Cavendish when newly detected in a country. Considering the proximity of Mayotte to other islands of the Comoros archipelago, Madagascar and the East African coast, where banana is considered an important staple, this report describes a serious threat to banana production and the livelihoods of people in the region.

9.
Plants (Basel) ; 9(2)2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32098075

RESUMO

Wheat blast is a devastating disease caused by the pathogenic fungus Pyricularia oryzae. Wheat blast first emerged in South America before more recently reaching Bangladesh. Even though the pathogen can spread locally by air-dispersed spores, long-distance spread is likely to occur via infected wheat seed or grain. Wheat blast epidemics are caused by a genetic lineage of the fungus, called the Triticum lineage, only differing from the other P. oryzae lineages by less than 1% genetic divergence. In order to prevent further spread of this pathogen to other wheat-growing areas in the world, sensitive and specific detection tools are needed to test for contamination of traded seed lots by the P. oryzae Triticum lineage. In this study, we adopted a comparative genomics approach to identify new loci specific to the P. oryzae Triticum lineage and used them to design a set of new markers that can be used in conventional polymerase chain reaction (PCR), real-time PCR, or loop-mediated isothermal amplification (LAMP) for the detection of the pathogen, with improved inclusivity and specificity compared to currently available tests. A preliminary biological enrichment step of the seeds was shown to improve the sensitivity of the tests, which enabled the detection of the target at an infection rate as low as 0.25%. Combined with others, this new toolkit may be particularly beneficial in preventing the trade of contaminated seeds and in limiting the spread of the disease.

10.
Appl Microbiol Biotechnol ; 104(6): 2453-2468, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32006049

RESUMO

Plant diseases caused by pathogenic microorganisms represent a serious threat to plant productivity, food security, and natural ecosystems. An effective framework for early warning and rapid response is a crucial element to mitigate or prevent the impacts of biological invasions of plant pathogens. For these reasons, detection tools play an important role in monitoring plant health, surveillance, and quantitative pathogen risk assessment, thus improving best practices to mitigate and prevent microbial threats. The need to reduce the time of diagnosis has prompted plant pathologists to move towards more sensitive and rapid methods such as molecular techniques. Considering prevention to be the best strategy to protect plants from diseases, this review focuses on fast and reliable molecular methods to detect the presence of woody plant pathogens at early stage of disease development before symptoms occur in the host. A harmonized pool of novel technical, methodological, and conceptual solutions is needed to prevent entry and establishment of new diseases in a country and mitigate the impact of both invasive and indigenous organisms to agricultural and forest ecosystem biodiversity and productivity.


Assuntos
Fungos/isolamento & purificação , Biologia Molecular/métodos , Doenças das Plantas/prevenção & controle , Plantas/microbiologia , Madeira , Ecossistema , Fungos/patogenicidade , Doenças das Plantas/microbiologia
11.
Plant Dis ; 104(1): 60-70, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31647693

RESUMO

Rapid detection is key to managing emerging diseases because it allows their spread around the world to be monitored and limited. The first major wheat blast epidemics were reported in 1985 in the Brazilian state of Paraná. Following this outbreak, the disease quickly spread to neighboring regions and countries and, in 2016, the first report of wheat blast disease outside South America was released. This Asian outbreak was due to the trade of infected South American seed, demonstrating the importance of detection tests in order to avoid importing contaminated biological material into regions free from the pathogen. Genomic analysis has revealed that one particular lineage within the fungal species Pyricularia oryzae is associated with this disease: the Triticum lineage. A comparison of 81 Pyricularia genomes highlighted polymorphisms specific to the Triticum lineage, and this study developed a real-time PCR test targeting one of these polymorphisms. The test's performance was then evaluated in order to measure its analytical specificity, analytical sensitivity, and robustness. The C17 quantitative PCR test detected isolates belonging to the Triticum lineage with high sensitivity, down to 13 plasmid copies or 1 pg of genomic DNA per reaction tube. The blast-based approach developed here to study P. oryzae can be transposed to other emerging diseases.


Assuntos
Agricultura , Genoma Fúngico , Magnaporthe , Reação em Cadeia da Polimerase em Tempo Real , Triticum , Agricultura/métodos , Genes Fúngicos/genética , Genômica , Magnaporthe/genética , Doenças das Plantas/microbiologia , América do Sul , Triticum/microbiologia
12.
Sci Rep ; 9(1): 8195, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31160683

RESUMO

Fusarium circinatum is a harmful pathogenic fungus mostly attacking Pinus species and also Pseudotsuga menziesii, causing cankers in trees of all ages, damping-off in seedlings, and mortality in cuttings and mother plants for clonal production. This fungus is listed as a quarantine pest in several parts of the world and the trade of potentially contaminated pine material such as cuttings, seedlings or seeds is restricted in order to prevent its spread to disease-free areas. Inspection of plant material often relies on DNA testing and several conventional or real-time PCR based tests targeting F. circinatum are available in the literature. In this work, an international collaborative study joined 23 partners to assess the transferability and the performance of nine molecular protocols, using a wide panel of DNA from 71 representative strains of F. circinatum and related Fusarium species. Diagnostic sensitivity, specificity and accuracy of the nine protocols all reached values >80%, and the diagnostic specificity was the only parameter differing significantly between protocols. The rates of false positives and of false negatives were computed and only the false positive rates differed significantly, ranging from 3.0% to 17.3%. The difference between protocols for some of the performance values were mainly due to cross-reactions with DNA from non-target species, which were either not tested or documented in the original articles. Considering that participating laboratories were free to use their own reagents and equipment, this study demonstrated that the diagnostic protocols for F. circinatum were not easily transferable to end-users. More generally, our results suggest that the use of protocols using conventional or real-time PCR outside their initial development and validation conditions should require careful characterization of the performance data prior to use under modified conditions (i.e. reagents and equipment). Suggestions to improve the transfer are proposed.


Assuntos
Fusarium/isolamento & purificação , Biologia Molecular/normas , Pinus/microbiologia , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase/métodos , DNA Fúngico/análise , DNA de Plantas , Reações Falso-Positivas , Fusarium/genética , Cooperação Internacional , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
13.
PLoS One ; 14(1): e0207988, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30633747

RESUMO

Fusarium head blight (FHB) is a major cereal disease caused by a complex of Fusarium species. These species vary in importance depending on climatic conditions, agronomic factors or host genotype. In addition, Fusarium species can release toxic secondary metabolites. These mycotoxins constitute a significant food safety concern as they have health implications in both humans and animals. The Fusarium species involved in FHB differ in their pathogenicity, ability to produce mycotoxins, and fungicide sensitivity. Accurate and exhaustive identification of Fusarium species in planta is therefore of great importance. In this study, using a new set of primers targeting the EF1α gene, the diversity of Fusarium species on cereals was evaluated using Illumina high-throughput sequencing. The PCR amplification parameters and bioinformatic pipeline were optimized with mock and artificially infected grain communities and further tested on 65 field samples. Fusarium species were retrieved from mock communities and good reproducibility between different runs or PCR cycle numbers was be observed. The method enabled the detection of as few as one single Fusarium-infected grain in 10,000. Up to 17 different Fusarium species were detected in field samples of barley, durum and soft wheat harvested in France. This new set of primers enables the assessment of Fusarium diversity by high-throughput sequencing on cereal samples. It provides a more exhaustive picture of the Fusarium community than the currently used techniques based on isolation or species-specific PCR detection. This new experimental approach may be used to show changes in the composition of the Fusarium complex or to detect the emergence of new Fusarium species as far as the EF1α sequence of these species show a sufficient amount of polymorphism in the portion of sequence analyzed. Information on the distribution and prevalence of the different Fusarium species in a given geographical area, and in response to various environmental factors, is of great interest for managing the disease and predicting mycotoxin contamination risks.


Assuntos
Código de Barras de DNA Taxonômico , Grão Comestível/microbiologia , Fusarium/genética , Variação Genética , Fator 1 de Elongação de Peptídeos/genética , Primers do DNA/metabolismo , DNA Fúngico/genética , Especificidade da Espécie
14.
Plant Dis ; 103(2): 345-356, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30566843

RESUMO

Elsinoë fawcettii, E. australis, and Pseudocercospora angolensis are causal agents of citrus scab and spot diseases. The three pathogens are listed as quarantine pests in many countries and are subject to phytosanitary measures to prevent their entry. Diagnosis of these diseases based on visual symptoms is problematic, as they could be confused with other citrus diseases. Isolation of E. fawcettii, E. australis, and P. angolensis from infected tissues is challenging because they grow slowly on culture media. This study developed rapid and specific detection tools for the in planta detection of these pathogens, using either conventional PCR or one-tube multiplex real-time PCR. Primers and hybridization probes were designed to target the single-copy protein-coding gene MS204 for E. fawcettii and E. australis and the translation elongation factor (Tef-1α) gene for P. angolensis. The specificity of the assays was evaluated by testing against DNA extracted from a large number of isolates (102) collected from different citrus-growing areas in the world and from other hosts. The newly described species E. citricola was not included in the specificity test due to its unavailability from the CBS collection. The detection limits of conventional PCR for the three pathogens were 100, 100, and 10 pg µl-1 gDNA per reaction for E. fawcettii, E. australis, and P. angolensis, respectively. The quadruplex qPCR was fully validated assessing the following performance criteria: sensitivity, specificity, repeatability, reproducibility, and robustness. The quadruplex real-time PCR proved to be highly sensitive, detecting as low as 243, 241, and 242 plasmidic copies (pc) µl-1 of E. fawcettii, E. australis, and P. angolensis, respectively. Sensitivity and specificity of this quadruplex assay were further confirmed using 176 naturally infected citrus samples collected from Ethiopia, Cameroon, the United States, and Australia. The quadruplex assay developed in this study is robust, cost-effective, and capable of high-throughput detection of the three targets directly from citrus samples. This new detection tool will substantially reduce the turnaround time for reliable species identification and allow rapid response and appropriate action.


Assuntos
Ascomicetos , Citrus , Frutas , Reação em Cadeia da Polimerase em Tempo Real , Ascomicetos/genética , Ascomicetos/fisiologia , Citrus/microbiologia , Frutas/microbiologia , Genes Fúngicos/genética , Doenças das Plantas/microbiologia , Reprodutibilidade dos Testes
15.
Appl Microbiol Biotechnol ; 102(16): 7135-7146, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29955937

RESUMO

Fusarium circinatum and Caliciopsis pinea are the causal agents of Pitch canker and Caliciopsis canker, respectively. These diseases affect pines and other conifers both in Europe and North America. The two pathogens cause similar bleeding cankers, especially at the early stage of colonization. Symptoms closely resembling those due to F. circinatum can be instead associated with C. pinea. Since F. circinatum is a quarantine organism, subjected to provisional emergency measures, its report immediately causes serious economic implications, while C. pinea, even if now emerging, is not regulated in the EU nor in the USA. For this reason, a reliable and accurate diagnostic tool able to distinguish between the two organisms was considered a priority. In this study, we developed and standardized a duplex real-time PCR assay allowing the simultaneous recognition of C. pinea and F. circinatum DNA in pine tissue in a reasonably short time and for amounts as small as 0.06 pg/µl. The molecular assay is, therefore, able to detect the infection even before symptoms have fully developed. The test was challenged with a very large set of strains (110 different isolates) collected in different regions of the world and host trees, and gave reliable results. The high efficiency of this method suggests its use as a standard diagnostic tool during phytosanitary controls. In addition, the duplex real-time PCR assay presented here is the first DNA-based method designed to detect C. pinea, which is becoming an increasing threat to pine stands both in North America and in Europe.


Assuntos
Ascomicetos/genética , Agricultura Florestal/métodos , Fusarium/genética , Pinus/microbiologia , Reação em Cadeia da Polimerase em Tempo Real , Europa (Continente) , América do Norte , Doenças das Plantas/microbiologia
16.
Nat Ecol Evol ; 2(6): 1000-1008, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29686237

RESUMO

Accelerating international trade and climate change make pathogen spread an increasing concern. Hymenoscyphus fraxineus, the causal agent of ash dieback, is a fungal pathogen that has been moving across continents and hosts from Asian to European ash. Most European common ash trees (Fraxinus excelsior) are highly susceptible to H. fraxineus, although a minority (~5%) have partial resistance to dieback. Here, we assemble and annotate a H. fraxineus draft genome, which approaches chromosome scale. Pathogen genetic diversity across Europe and in Japan, reveals a strong bottleneck in Europe, though a signal of adaptive diversity remains in key host interaction genes. We find that the European population was founded by two divergent haploid individuals. Divergence between these haplotypes represents the ancestral polymorphism within a large source population. Subsequent introduction from this source would greatly increase adaptive potential of the pathogen. Thus, further introgression of H. fraxineus into Europe represents a potential threat and Europe-wide biological security measures are needed to manage this disease.


Assuntos
Ascomicetos/genética , Fraxinus/microbiologia , Genoma Fúngico , Doenças das Plantas/microbiologia , Europa (Continente) , Haplótipos/genética
17.
Appl Environ Microbiol ; 84(11)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29572213

RESUMO

Techniques based on high-throughput sequencing (HTS) of environmental DNA have provided a new way of studying fungal diversity. However, these techniques suffer from a number of methodological biases which may appear at any of the steps involved in a metabarcoding study. Air is one of the most important environments where fungi can be found, because it is the primary medium of dispersal for many species. Looking ahead to future developments, it was decided to test 20 protocols, including different passive spore traps, spore recovery procedures, DNA extraction kits, and barcode loci. HTS was performed with the Illumina MiSeq platform targeting two subloci of the fungal internal transcribed spacer. Multivariate analysis and generalized linear models showed that the type of passive spore trap, the spore recovery procedure, and the barcode all impact the description of fungal communities in terms of richness and diversity when assessed by HTS metabarcoding. In contrast, DNA extraction kits did not significantly impact these results. Although passive traps may be used to describe airborne fungal communities, a study using specific real-time PCR and a mock community showed that these kinds of traps are affected by environmental conditions that may induce losses of biological material, impacting diversity and community composition results.IMPORTANCE The advent of high-throughput sequencing (HTS) methods, such as those offered by next-generation sequencing (NGS) techniques, has opened a new era in the study of fungal diversity in different environmental substrates. In this study, we show that an assessment of the diversity of airborne fungal communities can reliably be achieved by the use of simple and robust passive spore traps. However, a comparison of sample processing protocols showed that several methodological biases may impact the results of fungal diversity when assessed by metabarcoding. Our data suggest that identifying these biases is of paramount importance to enable a correct identification and relative quantification of community members.


Assuntos
Microbiologia do Ar , Fungos/classificação , Fungos/isolamento & purificação , Variação Genética , Micobioma , Código de Barras de DNA Taxonômico , Primers do DNA/genética , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Sequenciamento de Nucleotídeos em Larga Escala , Reação em Cadeia da Polimerase em Tempo Real
18.
PLoS One ; 12(2): e0171767, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28178348

RESUMO

Fusarium oxysporum f. sp. cubense (Foc) is one of the most important threats to global banana production. Strategies to control the pathogen are lacking, with plant resistance offering the only long-term solution, if sources of resistance are available. Prevention of introduction of Foc into disease-free areas thus remains a key strategy to continue sustainable banana production. In recent years, strains of Foc affecting Cavendish bananas have destroyed plantations in a number of countries in Asia and in the Middle East, and one African country. One vegetative compatibility group (VCG), 01213/16, is considered the major threat to bananas in tropical and subtropical climatic conditions. However, other genetically related VCGs, such as 0121, may potentially jeopardize banana cultures if they were introduced into disease-free areas. To prevent the introduction of these VCGs into disease-free Cavendish banana-growing countries, a real-time PCR test was developed to accurately detect both VCGs. A previously described putative virulence gene was used to develop a specific combination of hydrolysis probe/primers for the detection of tropical Foc race 4 strains. The real-time PCR parameters were optimized by following a statistical approach relying on orthogonal arrays and the Taguchi method in an attempt to enhance sensitivity and ensure high specificity of the assay. This study also assessed critical performance criteria, such as repeatability, reproducibility, robustness, and specificity, with a large including set of 136 F. oxysporum isolates, including 73 Foc pathogenic strains representing 24 VCGs. The validation data demonstrated that the new assay could be used for regulatory testing applications on banana plant material and can contribute to preventing the introduction and spread of Foc strains affecting Cavendish bananas in the tropics.


Assuntos
Fusarium/classificação , Fusarium/genética , Reação em Cadeia da Polimerase em Tempo Real , Análise de Variância , Sondas de DNA , DNA Fúngico , DNA Intergênico , Musa/microbiologia , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
19.
Fungal Biol ; 117(6): 389-98, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23809649

RESUMO

Melampsora medusae (Mm), one of the causal agents of poplar rust, is classified as an A2 quarantine pest for European Plant Protection Organization (EPPO) and its presence in Europe is strictly controlled. Two formae speciales have been described within Mm, Melampsora medusae f. sp. deltoidae (Mmd), and Melampsora medusae f. sp. tremuloidae (Mmt) on the basis of their pathogenicity on Populus species from the section Aigeiros (e.g. Populus deltoides) or Populus (e.g. Populus tremuloides), respectively. In this study, a real-time polymerase chain reaction (PCR) assay was developed allowing the detection of Mmd, the forma specialis that is economically harmful. A set of primers and hydrolysis probe were designed based on sequence polymorphisms in the large ribosomal RNA subunit (28S). The real-time PCR assay was optimized and performance criteria of the detection method, i.e. sensitivity, specificity, repeatability, reproducibility, and robustness, were assessed. The real-time PCR method was highly specific and sensitive and allowed the detection of one single urediniospore of Mmd in a mixture of 2 mg of urediniospores of other Melampsora species. This test offers improved specificity over currently existing conventional PCR tests and can be used for specific surveys in European nurseries and phytosanitary controls, in order to avoid introduction and spread of this pathogen in Europe.


Assuntos
Basidiomycota/isolamento & purificação , Micologia/métodos , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Basidiomycota/genética , Primers do DNA/genética , Europa (Continente) , Sondas de Oligonucleotídeos/genética , Populus/microbiologia , Quarentena , RNA Fúngico/genética , RNA Ribossômico 28S/genética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
20.
Phytopathology ; 102(9): 908-17, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22671026

RESUMO

Plasmopara halstedii, the causal agent of downy mildew of sunflower, is an oomycete listed as a quarantine pathogen. This obligate parasite resides in a quiescent state in seeds of sunflower and can be spread from seed production areas to areas of crop production by international seed trade. To prevent the spread or the introduction of potentially new genotypes or fungicide-tolerant strains, an efficient method to detect P. halstedii in sunflower seed is required. This work reports the optimization of a real-time detection tool that targets the pathogen within sunflower seeds, and provides statistically validated data for that tool. The tool proved to be specific and inclusive, based on computer simulation and in vitro assessments, and could detect as few as 45 copies of target DNA. A fully optimized DNA extraction protocol was also developed starting from a sample of 1,000 sunflower seeds, and enabled the detection of <1 infected seed/1,000 seeds. To ensure reliability of the results, a set of controls was used systematically during the assays, including a plant-specific probe used in a duplex quantitative polymerase chain reaction that enabled the assessment of the quality of each DNA extract.


Assuntos
Helianthus/microbiologia , Oomicetos/classificação , Oomicetos/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Sementes/microbiologia , DNA/genética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...